Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 670, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004723

ABSTRACT

The most effective strategy for managing wheat bacterial blight caused by Pseudomonas syringae pv. syringae is believed to be the use of resistant cultivars. Researching the correlation between molecular markers and stress resistance can expedite the plant breeding process. The current study aims to evaluate the response of 27 bread wheat cultivars to bacterial blight disease in order to identify resistant and susceptible cultivars and to pinpoint ISSR molecular markers associated with bacterial blight resistance genes. ISSR markers are recommended for assessing a plant's disease resistance. This experiment is focused on identifying ISSR molecular markers linked to bacterial blight resistance. After applying the bacterial solution to the leaves, we performed sampling to determine the infection percentage in the leaves at different intervals (7, 14, and 18 days after spraying). In most cultivars, the average leaf infection percentage decreased 18 days after spraying on young leaves. However, in some cultivars such as Niknegad, Darab2, and Zarin, leaf infection increased in older leaves and reached up to 100% necrosis. In our study, 12 ISSR primers generated a total of 170 bands, with 156 being polymorphic. The primers F10 and F5 showed the highest polymorphism, while the F7 primer exhibited the lowest polymorphism. Cluster analysis grouped these cultivars into four categories. The resistant group included Qods, Omid, and Atrak cultivars, while the semi-resistant and susceptible groups comprised the rest of the cultivars. Through binary logistic analysis, we identified three Super oxide dismutase-related genes that contribute to plant resistance to bacterial blight. These genes were linked to the F3, F5, and F12 primers in regions I (1500 bp), T (1000 bp), and G (850 bp), respectively. We also identified seven susceptibility-associated genes. Atrak, Omid, and Qods cultivars exhibited resistance against bacterial blight, and three genes associated with this resistance were linked to the F3, F5, and F12 primers. These markers can be used for screening or transferring tolerance to other wheat cultivars in breeding programs.


Subject(s)
Disease Resistance , Plant Diseases , Pseudomonas syringae , Triticum , Plant Diseases/microbiology , Plant Diseases/genetics , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Pseudomonas syringae/physiology , Genetic Markers , Plant Leaves/microbiology , Plant Leaves/genetics , Logistic Models
2.
Plant Physiol Biochem ; 213: 108847, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889532

ABSTRACT

Nanotechnology is advancing rapidly in this century and the industrial use of nanoparticles for new applications in the modernization of different industries such as agriculture, electronic, food, energy, environment, healthcare and medicine is growing exponentially. Despite applications of several nanoparticles in different industries, they show harmful effects on biological systems, especially in plants. Various mechanisms for the toxic effects of nanoparticles have already been proposed; however, elevated levels of reactive oxygen species (ROS) molecules including radicals [(e.g., superoxide (O2•‒), peroxyl (HOO•), and hydroxyl (HO•) and non-radicals [(e.g., hydrogen peroxide (H2O2) and singlet oxygen (1O2) is more important. Excessive production/and accumulation of ROS in cells and subsequent induction of oxidative stress disrupts the normal functioning of physiological processes and cellular redox reactions. Some of the consequences of ROS overproduction include peroxidation of lipids, changes in protein structure, DNA strand breaks, mitochondrial damage, and cell death. Key enzymatic antioxidants with ROS scavenging ability comprised of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), and glutathione reductase (GR), and non-enzymatic antioxidant systems including alpha-tocopherol, flavonoids, phenolic compounds, carotenoids, ascorbate, and glutathione play vital role in detoxification and maintaining plant health by balancing redox reactions and reducing the level of ROS. This review provides compelling evidence that phytotoxicity of nanoparticles, is mainly caused by overproduction of ROS after exposure. In addition, the present review also summarizes the intrinsic detoxification mechanisms in plants in response to nanoparticles accumulation within plant cells.


Subject(s)
Metal Nanoparticles , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Plant Cells/metabolism , Plant Cells/drug effects , Oxidative Stress/drug effects , Plants/metabolism , Plants/drug effects , Oxides/toxicity , Antioxidants/metabolism
3.
Sci Rep ; 14(1): 13091, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849601

ABSTRACT

The aim of current study was to prepared zinc oxide nanofertilzers by ecofriendly friendly, economically feasible, free of chemical contamination and safe for biological use. The study focused on crude extract of Withania coagulans as reducing agent for the green synthesis of ZnO nano-particles. Biosynthesized ZnO NPs were characterized by UV-Vis spectroscopy, XRD, FTIR and GC-MS analysis. However, zinc oxide as green Nano fertilizer was used to analyze responses induced by different doses of ZnO NPs [0, 25, 50,100, 200 mg/l and Zn acetate (100 mg/l)] in Triticum aestivum (wheat). The stimulatory and inhibitory effects of foliar application of ZnO NPs were studied on wheat (Triticum aestivum) with aspect of biomass accumulation, morphological attributes, biochemical parameters and anatomical modifications. Wheat plant showed significant (p < 0.01) enhancement of growth parameters upon exposure to ZnO NPs at specific concentrations. In addition, wheat plant showed significant increase in biochemical attributes, chlorophyll content, carotenoids, carbohydrate and protein contents. Antioxidant enzyme (POD, SOD, CAT) and total flavonoid content also confirmed nurturing impact on wheat plant. Increased stem, leaf and root anatomical parameters, all showed ZnO NPs mitigating capacity when applied to wheat. According to the current research, ZnO NPs application on wheat might be used to increase growth, yield, and Zn biofortification in wheat plants.


Subject(s)
Fertilizers , Oxidation-Reduction , Triticum , Zinc Oxide , Triticum/metabolism , Triticum/growth & development , Triticum/drug effects , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Plant Leaves/metabolism , Plant Leaves/drug effects , Chlorophyll/metabolism , Antioxidants/metabolism , Carotenoids/metabolism , Metal Nanoparticles/chemistry , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development
4.
Food Sci Nutr ; 12(6): 3872-3882, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873442

ABSTRACT

Coriander (Coriandrum sativum L.) is an annual herb belonging to the Apiaceae family that is grown worldwide. This aromatic herb has been used for its nutritional value and biological properties. In this study, we compared the essential oil composition and antibacterial activity of coriander seeds from nine Iranian and Iraqi populations for the first time. The seed oils were extracted using a Clevenger-type apparatus, and their chemical composition was determined using GC and GC/MS Agilent apparatuses. The antimicrobial activity of the oils was tested against three infectious bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) using the agar well diffusion method. The experiments were repeated three times, and the results were analyzed using PAST, SAS, and SPSS software. The results showed that oxygenated monoterpenes, especially linalool, were the major compounds in the oils, followed by α-pinene, γ-terpinene, and geranyl acetate. The proportions of these compounds varied among the populations. Trace amounts of other compounds were also detected, some of which were only found in certain populations. The populations were detected as linalool chemotype, and classified into four groups based on their chemical constituents in the UPGMA tree. The PCA-Biplot showed that these groups were characterized by the presence and percentage of specific compounds. The essential oils showed bacterial growth inhibitory properties only at 100% concentration. S. aureus was the most sensitive bacterium to the coriander essential oil, while the essential oils of all populations inhibited the growth of this bacterium. Additionally, the essential oils were more effective than antibiotics against E. coli. These findings contribute to our understanding of coriander seed essential oil by providing data on antibacterial activity and chemical characteristics. Furthermore, the study highlights the importance of selecting populations based on their specific essential oil profiles for antibacterial applications.

5.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735908

ABSTRACT

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Subject(s)
Cadmium , Catharanthus , Gene Expression Regulation, Plant , Melatonin , Nitric Oxide , Oxidative Stress , Plant Leaves , Vinblastine , Catharanthus/metabolism , Catharanthus/genetics , Catharanthus/drug effects , Nitric Oxide/metabolism , Cadmium/metabolism , Cadmium/toxicity , Oxidative Stress/drug effects , Vinblastine/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Gene Expression Regulation, Plant/drug effects , Hydrogen Peroxide/metabolism , Antioxidants/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
6.
Sci Rep ; 14(1): 12107, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802543

ABSTRACT

Precipitation due to its complex nature requires a comprehensive model for forecasting purposes and the efficiency of improved ARIMA (IARIMA) forecasts has been proved relative to the conventional models. This study used two procedures in the structure of IARIMA to obtain accurate monthly precipitation forecasts in four stations located in northern Iran; Bandar Anzali, Rasht, Ramsar, and Babolsar. The first procedure applied support vector regression (SVR) for modeling the statistical characteristics and monthly precipitation of each class, IARIMA-SVR, which improved the evaluation metrics so that the decrease of Theil's coefficient and average relative variance in all stations was 21.14% and 17.06%, respectively. Two approaches are defined in the second procedure which includes a forecast combination (C) scheme, IARIMA-C-particle swarm optimization (PSO), and artificial intelligence technique. Generally, most of the time, IARIMA-C-PSO relative to the other approach, exhibited acceptable results and the accuracy improvement was greater than zero at all stations. Comparing the two procedures, it is found that the capability of IARIMA-C-PSO is higher concerning the IARIMA-SVR, so the decrease in the normalized mean squared error value from IARIMA to IARIMA-SVR and IARIMA-C-PSO is 36.72% and 39.92%, respectively for all stations. The residual predictive deviation (RPD) of IARIMA-C-PSO for all stations is greater than 2, which indicates the high performance of the model. With a comprehensive investigation, the performance of Bandar Anzali station is better than the other stations. By developing an improved ARIMA model, one can achieve a high performance in structure identifying and forecasting of monthly time series which is one of the issues of interest and importance.

7.
ACS Omega ; 9(12): 13522-13533, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559935

ABSTRACT

Soil pollution from various anthropogenic and natural activities poses a significant threat to the environment and human health. This study explored the sources and types of soil pollution and emphasized the need for innovative remediation approaches. Nanotechnology, including the use of nanoparticles, is a promising approach for remediation. Diverse types of nanomaterials, including nanobiosorbents and nanobiosurfactants, have shown great potential in soil remediation processes. Nanotechnology approaches to soil pollution remediation are multifaceted. Reduction reactions and immobilization techniques demonstrate the versatility of nanomaterials in mitigating soil pollution. Nanomicrobial-based bioremediation further enhances the efficiency of pollutant degradation in agricultural soils. A literature-based screening was conducted using different search engines, including PubMed, Web of Science, and Google Scholar, from 2010 to 2023. Keywords such as "soil pollution, nanotechnology, nanoremediation, heavy metal remediation, soil remediation" and combinations of these were used. The remediation of heavy metals using nanotechnology has demonstrated promising results and offers an eco-friendly and sustainable solution to address this critical issue. Nanobioremediation is a robust strategy for combatting organic contamination in soils, including pesticides and herbicides. The use of nanophytoremediation, in which nanomaterials assist plants in extracting and detoxifying pollutants, represents a cutting-edge and environmentally friendly approach for tackling soil pollution.

8.
BMC Plant Biol ; 24(1): 269, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605338

ABSTRACT

Within a few decades, the species habitat was reshaped at an alarming rate followed by climate change, leading to mass extinction, especially for sensitive species. Species distribution models (SDMs), which estimate both present and future species distribution, have been extensively developed to investigate the impacts of climate change on species distribution and assess habitat suitability. In the West Asia essential oils of T. daenensis and T. kotschyanus include high amounts of thymol and carvacrol and are commonly used as herbal tea, spice, flavoring agents and medicinal plants. Therefore, this study aimed to model these Thymus species in Iran using the MaxEnt model under two representative concentration pathways (RCP 4.5 and RCP 8.5) for the years 2050 and 2070. The findings revealed that the mean temperature of the warmest quarter (bio10) was the most significant variable affecting the distribution of T. daenensis. In the case of T. kotschyanus, slope percentage was the primary influencing factor. The MaxEnt modeling also demonstrated excellent performance, as indicated by all the Area Under the Curve (AUC) values exceeding 0.9. Moreover, based on the projections, the two mentioned species are expected to undergo negative area changes in the coming years. These results can serve as a valuable achievement for developing adaptive management strategies aimed at enhancing protection and sustainable utilization in the context of global climate change.


Subject(s)
Climate Change , Ecosystem , Iran , Extinction, Biological , Temperature
9.
Sci Rep ; 14(1): 7896, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570571

ABSTRACT

Ornamental foliage plants that have a dense appearance are highly valued. One way to achieve this is by using plant growth regulators as a tool for plant growth management. In a greenhouse with a mist irrigation system, a study was conducted on dwarf schefflera, an ornamental foliage plant, which was exposed to foliar application of gibberellic acid and benzyladenine hormones. The hormones were sprayed on dwarf schefflera leaves at 0, 100, and 200 mg/l concentrations, at 15-day intervals in three stages. The experiment was conducted as a factorial based on a completely randomized design, with four replicates. The combination of gibberellic acid and benzyladenine at 200 mg/l concentration had a significant effect on leaf number, leaf area, and plant height. The treatment also resulted in the highest content of photosynthetic pigments. Furthermore, the highest soluble carbohydrate to reducing sugars ratio was observed in treatments of 100 and 200 mg/l benzyladenine, and 200 mg/l gibberellic acid + benzyladenine. Stepwise regression analysis showed that root volume was the first variable to enter the model, explaining 44% of variations. The next variable was root fresh weight, and the two-variable model explained 63% of variations in leaf number. The greatest positive effect on leaf number was related to root fresh weight (0.43), which had a positive correlation with leaf number (0.47). The results showed that 200 mg/l concentration of gibberellic acid and benzyladenine significantly improved morphological growth, chlorophyll and carotenoid synthesis, and reducing sugar and soluble carbohydrate contents in dwarf schefflera.


Subject(s)
Benzylamines , Gibberellins , Gibberellins/pharmacology , Benzylamines/pharmacology , Plants , Carbohydrates/analysis , Hormones/pharmacology , Plant Leaves/chemistry
10.
BMC Plant Biol ; 24(1): 288, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627611

ABSTRACT

One of the major problems endangering plant growth and productivity worldwide is salt stress. This study aimed to assess the effects of potassium silicate (K2O3Si) on the physical, biochemical, and morphological characteristics of chicory (Cichorium intybus L.) under various levels of salinity stress. The plants were treated with K2O3Si at concentrations of 0, 1, 2, and 3 mM and cultivated under different salt stress conditions (0, 80, 160, and 240 mM NaCl). The findings revealed that salt stress led to decreased root and shoot dry weights, Fv/Fm ratio, chlorophyll a, b, and total chlorophyll, as well as inulin contents. However, foliar exposure to K2O3Si at all salinity levels resulted in improvements in the measured traits. As salinity levels increased, there was a corresponding increase in the accumulation of sodium ions (Na+) and a sharp reduction in potassium ions (K +) in the shoot. Nonetheless, treatment with K2O3Si caused a decrease in Na + accumulation and an improvement in K+ content under all salinity levels. Carotenoid content increased under 80 mM salinity stress, but decreased with higher salinity levels. Application of K2O3Si at all levels resulted in increased carotenoid content under salinity stress conditions. The content of MDA increased significantly with increasing salinity stress, particularly at 240 mM. However, foliar spraying with K2O3Si significantly decreased MDA content at all salinity levels. Salinity stress up to 160 mM increased the total phenol, flavonoid, and anthocyanin contents, while 240 mM NaCl decreased the biosynthesis of phytochemicals. Additionally, the use of K2O3Si increased the content of total phenol, flavonoid, and anthocyanin at all salt levels. Foliar application of K2O3Si increased the tolerance of chicory plants to salinity stress by reducing MDA and increasing phenolic compounds and potassium content. These results suggest that exogenous K2O3Si can be a practical strategy to improve the growth and yield of chicory plants exposed to saline environments.


Subject(s)
Cichorium intybus , Chlorophyll A , Potassium , Anthocyanins , Sodium Chloride , Salt Stress , Antioxidants , Ions , Silicates , Phytochemicals , Carotenoids , Phenols , Salinity , Stress, Physiological
11.
BMC Plant Biol ; 24(1): 179, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454341

ABSTRACT

An experiment was conducted in a greenhouse to determine the effects of different supplemental light spectra on the growth, nutrient uptake, and fruit quality of four strawberry cultivars. The plants were grown under natural light and treated with blue (460 nm), red (660 nm), and red/blue (3:1) lights. Results showed that the "Parous" and "Camarosa" had higher fresh and dry mass of leaves, roots, and crowns compared to the "Sabrina" and "Albion". The use of artificial LED lights improved the vegetative growth of strawberry plants. All three supplemental light spectra significantly increased the early fruit yield of cultivars except for "Parous". The red/blue supplemental light spectrum also increased the fruit mass and length of the "Albion". Supplemental light increased the total chlorophyll in "Camarosa" and "Albion", as well as the total soluble solids in fruits. The "Albion" had the highest concentration of fruit anthocyanin, while the "Sabrina" had the lowest. The use of supplemental light spectra significantly increased the fruit anthocyanin concentration in all cultivars. Without supplemental light, the "Camarosa" had the lowest concentration of K and Mg, which increased to the highest concentration with the use of supplemental light spectra. All three spectra increased Fe concentration to the highest value in the "Sabrina", while only the red/blue light spectrum was effective on the "Camarosa". In conclusion, the use of supplemental light can increase the yield and fruit quality of strawberries by elevating nutrients, chlorophyll, and anthocyanin concentrations in plants.


Subject(s)
Anthocyanins , Fragaria , Fruit , Light , Chlorophyll
12.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473970

ABSTRACT

Chamaecyparis obtusa (Siebold & Zucc.) Endl., which belongs to the Cupressaceae family, occurs naturally in North America and Asia, especially in Korea, Taiwan and Japan, where it is an evergreen, coniferous, sacred, ethnic tree. It has many useful varieties that are widespread throughout the world and grown for decorative purposes. It is most commonly used as an ornamental plant in homes, gardens or parks. It is also widely used in many areas of the economy; for example, its wood is used in architecture as well as furniture production. In addition, oil extracted from Chamaecyparis obtusa is increasingly used in cosmetology for skin care. Due to its wide economic demand, mainly in Japan, it represents the largest area of plantation forest. Despite this, it is on the red list of endangered species. Its use in ethnopharmacology has led to more and more research in recent years in an attempt to elucidate the potential mechanisms of its various biological activities, such as antimicrobial, antioxidant, anticancer, antidiabetic, antiasthmatic, anti-inflammatory, antiallergic, analgesic and central nervous system effects. It has also been shown that Chamaecyparis obtusa can be used as an insect repellent and an ingredient in plant disease treatment. This thesis provides a comprehensive review of the biological studies to date, looking at different areas of the economic fields of potential use of Chamaecyparis obtusa.


Subject(s)
Chamaecyparis , Chamaecyparis/physiology , Trees/physiology , Japan , Anti-Inflammatory Agents , Asia
13.
Sci Rep ; 14(1): 7243, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538702

ABSTRACT

This research explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using Cassia occidentalis L. seed extract. Various analytical techniques, including UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), were employed for comprehensive characterization. The UV-visible spectra revealed a distinct peak at 425 nm, while the seed extract exhibited peaks at 220 and 248 nm, indicating the presence of polyphenols and phytochemicals. High-resolution TEM unveiled spherical and oval-shaped AgNPs with diameters ranging from 6.44 to 28.50 nm. The SEM exhibiting a spherical shape and a polydisperse nature, thus providing insights into the morphology of the AgNPs. EDX analysis confirmed the presence of silver atoms at 10.01% in the sample. XRD results unequivocally confirm the crystalline nature of the AgNPs suspension, thereby providing valuable insights into their structural characteristics and purity. The antioxidant properties of AgNPs, C. occidentalis seed extract, and butylated hydroxytoluene (BHT) were assessed, revealing IC50 values of 345, 500, and 434 µg/mL, respectively. Antibacterial evaluation against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli demonstrated heightened sensitivity of bacteria to AgNPs compared to AgNO3. Standard antibiotics, tetracycline, and ciprofloxacin, acting as positive controls, exhibited substantial antibacterial efficacy. The green-synthesized AgNPs displayed potent antibacterial activity, suggesting their potential as a viable alternative to conventional antibiotics for combating pathogenic bacterial infections. Furthermore, potential biomedical applications of AgNPs were thoroughly discussed.


Subject(s)
Metal Nanoparticles , Senna Plant , Silver/pharmacology , Silver/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry , Spectrometry, X-Ray Emission , Seeds , X-Ray Diffraction , Escherichia coli , Bacillus subtilis , Spectroscopy, Fourier Transform Infrared
14.
Sci Rep ; 14(1): 7528, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38553550

ABSTRACT

Biological and green synthesis of nanomaterial is a superior choice over chemical and physical methods due to nanoscale attributes implanted in a green chemistry matrix, have sparked a lot of interest for their potential uses in a variety of sectors. This research investigates the growing relevance of nanocomposites manufactured using ecologically friendly, green technologies. The transition to green synthesis correlates with the worldwide drive for environmentally sound procedures, limiting the use of traditional harsh synthetic techniques. Herein, manganese was decorated on ZnO NPs via reducing agent of Withania-extract and confirmed by UV-spectrophotometry with highest peak at 1:2 ratio precursors, and having lower bandgap energy (3.3 eV). XRD showed the sharp peaks and confirms the formation of nanoparticles, having particle size in range of 11-14 nm. SEM confirmed amorphous tetragonal structure while EDX spectroscopy showed the presence of Zn and Mn in all composition. Green synthesized Mn-decorated ZnO-NPs screened against bacterial strains and exhibited excellent antimicrobial activities against gram-negative and gram-positive bacteria. To check further, applicability of synthesized Mn-decorated Zn nanocomposites, their photocatalytic activity against toxic water pollutants (methylene blue (MB) dye) were also investigated and results showed that 53.8% degradation of MB was done successfully. Furthermore, the installation of green chemistry in synthesizing nanocomposites by using plant extract matrix optimizes antibacterial characteristics, antioxidant and biodegradability, helping to build sustainable green Mn decorated ZnO nanomaterial. This work, explains how biologically friendly Mn-doped ZnO nanocomposites can help reduce the environmental impact of traditional packaging materials. Based on these findings, it was determined that nanocomposites derived from biological resources should be produced on a wide scale to eradicate environmental and water contaminants through degradation.


Subject(s)
Nanocomposites , Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants , Nanocomposites/chemistry
15.
Sci Rep ; 14(1): 5789, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461344

ABSTRACT

The production of surface compounds coated with active substances has gained significant attention in recent years. This study investigated the physical, mechanical, antioxidant, and antimicrobial properties of a composite made of starch and zinc oxide nanoparticles (ZnO NPs) containing various concentrations of Ferula gummosa essential oil (0.5%, 1%, and 1.5%). The addition of ZnO NPs improved the thickness, mechanical and microbial properties, and reduced the water vapor permeability of the starch active film. The addition of F. gummosa essential oil to the starch nanocomposite decreased the water vapor permeability from 6.25 to 5.63 g mm-2 d-1 kPa-1, but this decrease was significant only at the concentration of 1.5% of essential oils (p < 0.05). Adding 1.5% of F. gummosa essential oil to starch nanocomposite led to a decrease in Tensile Strength value, while an increase in Elongation at Break values was observed. The results of the antimicrobial activity of the nanocomposite revealed that the pure starch film did not show any lack of growth zone. The addition of ZnO NPs to the starch matrix resulted in antimicrobial activity on both studied bacteria (Staphylococcus aureus and Escherichia coli). The highest antimicrobial activity was observed in the starch/ZnO NPs film containing 1.5% essential oil with an inhibition zone of 340 mm2 on S. aureus. Antioxidant activity increased significantly with increasing concentration of F. gummosa essential oil (P < 0.05). The film containing 1.5% essential oil had the highest (50.5%) antioxidant activity. Coating also improved the chemical characteristics of fish fillet. In conclusion, the starch nanocomposite containing ZnO NPs and F. gummosa essential oil has the potential to be used in the aquatic packaging industry.


Subject(s)
Anti-Infective Agents , Ferula , Nanoparticles , Oils, Volatile , Zinc Oxide , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Staphylococcus aureus , Steam , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Starch/chemistry , Escherichia coli , Nanoparticles/chemistry
16.
Sci Rep ; 14(1): 3641, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351276

ABSTRACT

Over the course of a few decades, climate change has caused a rapid and alarming reshaping of species habitats, resulting in mass extinction, particularly among sensitive species. In order to investigate the effects of climate change on species distribution and assess habitat suitability, researchers have developed species distribution models (SDMs) that estimate present and future species distribution. In West Asia, thyme species such as T. fedtschenkoi, T. pubescens, and T. transcaucasicus are rich in thymol and carvacrol, and are commonly used as herbal tea, spice, flavoring agents, and medicinal plants. This study aims to model the distribution of these Thymus species in Iran using the MaxEnt model under two representative concentration pathways (RCP 4.5 and RCP 8.5) for the years 2050 and 2070. The objective is to identify the crucial bioclimatic (n = 5), edaphic (n = 1), and topographic (n = 3) variables that influence their distribution and predict how their distribution might change under various climate scenarios. The findings reveal that the most significant variable affecting T. fedtschenkoi and T. pubescens is altitude, while soil organic carbon content is the primary factor influencing the distribution of T. transcaucasicus. The MaxEnt modeling demonstrates excellent performance, as indicated by all the area under the curve (AUC) values exceeding 0.9. Based on the projections, it is expected that these three thyme species will experience negative area changes in the coming years. These results can serve as a valuable tool for developing adaptive management strategies aimed at enhancing protection and sustainable utilization in the context of global climate change. Special attention should be given to conserving T. fedtschenkoi, T. pubescens, and T. transcaucasicus due to their significant habitat loss in the future.


Subject(s)
Climate Change , Thymus Plant , Iran , Carbon , Soil , Ecosystem
17.
BMC Plant Biol ; 24(1): 116, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38365618

ABSTRACT

Water deficit stress is one of the most significant environmental abiotic factors influencing plant growth and metabolism globally. Recently, encouraging outcomes for the use of nanomaterials in agriculture have been shown to reduce the adverse effects of drought stress on plants. The present study aimed to investigate the impact of various carbon nanomaterials (CNMs) on the physiological, morphological, and biochemical characteristics of bell pepper plants subjected to water deficit stress conditions. The study was carried out as a factorial experiment using a completely randomized design (CRD) in three replications with a combination of three factors. The first factor considered was irrigation intensity with three levels [(50%, 75%, and 100% (control) of the field capacity (FC)] moisture. The second factor was the use of carbon nanomaterials [(fullerene C60, multi-walled carbon nanotubes (MWNTs) and graphene nanoplatelets (GNPs)] at various concentrations [(control (0), 100, 200, and 1000 mg/L)]. The study confirmed the foliar uptake of CNMs using the Scanning Electron Microscopy (SEM) technique. The effects of the CNMs were observed in a dose-dependent manner, with both stimulatory and toxicity effects being observed. The results revealed that exposure to MWNTs (1000 mg/L) under well-watered irrigation, and GNPs treatment (1000 mg/L) under severe drought stress (50% FC) significantly (P < 0.01) improved fruit production and fruit dry weight by 76.2 and 73.2% as compared to the control, respectively. Also, a significant decrease (65.9%) in leaf relative water content was obtained in plants subjected to soil moisture of 50% FC over the control. Treatment with GNPs at 1000 mg/L under 50% FC increased electrolyte leakage index (83.6%) compared to control. Foliar applied MWNTs enhanced the leaf gas exchange, photosynthesis rate, and chlorophyll a and b concentrations, though decreased the oxidative shock in leaves which was demonstrated by the diminished electrolyte leakage index and upgrade in relative water content and antioxidant capacity compared to the control. Plants exposed to fullerene C60 at 100 and 1000 mg/L under soil moisture of 100 and 75% FC significantly increased total flavonoids and phenols content by 63.1 and 90.9%, respectively, as compared to the control. A significant increase (184.3%) in antioxidant activity (FRAP) was observed in plants exposed to 200 mg/L MWCNTs under irrigation of 75% FC relative to the control. The outcomes proposed that CNMs could differentially improve the plant and fruit characteristics of bell pepper under dry conditions, however, the levels of changes varied among CNMs concentrations. Therefore, both stimulatory and toxicity effects of employed CNMs were observed in a dose-dependent manner. The study concludes that the use of appropriate (type/dose) CNMs through foliar application is a practical tool for controlling the water shortage stress in bell pepper. These findings will provide the basis for more research on CNMs-plant interactions, and with help to ensure their safe and sustainable use within the agricultural chains.


Subject(s)
Capsicum , Fullerenes , Graphite , Nanotubes, Carbon , Nanotubes, Carbon/toxicity , Nanotubes, Carbon/chemistry , Capsicum/physiology , Chlorophyll A , Graphite/chemistry , Dehydration , Antioxidants/metabolism , Water/metabolism , Soil
18.
Sci Rep ; 13(1): 21312, 2023 12 03.
Article in English | MEDLINE | ID: mdl-38042953

ABSTRACT

Lentils are a significant source of plant protein and are cultivated across Asia, Europe, and North Africa. Plants are subjected to various environmental stresses, which can hinder growth, yield, and productivity. 5-aminolevulinic acid (ALA) is a compound that acts as a precursor in the biosynthesis of tetrapyrroles and can increase plant tolerance to different abiotic stressors. However, the effects of exogenously applied ALA on lentil growth, yield, and physiological parameters under rain-fed and supplemental irrigation conditions are not well-known. In this study, a split plot experiment was conducted to investigate the impact of ALA foliar application and supplemental irrigation on lentil (Lens culinaris Medik.). The experiment was designed based on a randomized complete block with three replications. The main plot included four levels of supplemental irrigation [(supplementary irrigation in the flowering and early seed-filling stages, supplementary irrigation in the flowering stage, supplementary irrigation in the early seed-filling along with rain-fed conditions (no irrigation)]. The subplot considered foliar application of ALA at varying levels [(0 (control), 50 and 100 ppm)]. The results showed that water regimes and foliar spray with ALA significantly (P Ë‚ 0.01) affected plant height, number of pods per plant, pod weight, number of seeds per pod and weight of 1000 seeds, biological yield, seed yield, and harvest index. The highest total chlorophyll content was observed in plants that were subjected to supplementary irrigation in flowering and early seed filling stages and foliar sprayed with 100 ppm ALA. The study also found that exogenous ALA improved drought tolerance in lentil plants under rain-fed conditions mainly by regulating antioxidant enzymes, which ultimately protected the cellular membranes against overproduction of H2O2. Furthermore, ALA application increased total carbohydrate contents at all supplemental irrigation levels, but the rate was higher in complementary irrigation conditions during flowering and early seed-filling stages. Malondialdehyde (MDA), H2O2, and proline contents were increased in field-grown plants under rain-fed conditions without exogenous ALA application. In conclusion, this study sheds light on the effects of ALA foliar spray and supplemental irrigation on lentil growth, yield, and physiological parameters. The findings suggest that exogenous ALA can improve plant tolerance to various abiotic stressors and enhance plant growth, yield, and physiological parameters.


Subject(s)
Aminolevulinic Acid , Lens Plant , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/metabolism , Hydrogen Peroxide/metabolism , Lens Plant/metabolism , Rain , Water/metabolism
19.
Food Sci Nutr ; 11(12): 8143-8162, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38107131

ABSTRACT

To enhance crop yield and quality, plant cultivation in controlled-growing systems is an alternative to traditional open-field farming. The use of light-emitting diode (LED) as an adjustable light source represents a promising approach to improve plant growth, metabolism, and function. The objective of this study was to assess the impact of different light spectra (red, red/blue (3:1), blue, and white) with an emission peak of around 656, 656, 450, and 449 nm, respectively, under various replacement methods of nutrient solution (complete replacement (CR), EC-based replacement (ECBR), and replacing based on plant needs (RBPN)), on biomass, physiological traits, and macro- and micronutrient contents of two best-known lettuce varieties, Lollo Rossa (LR) and Lollo Bionda (LB), in the nutrient film technique (NFT) hydroponic system. The results indicated that mix of red and blue LED spectra under RBPN method is the most effective treatment to enhance fresh and dry weights of lettuce plants. In addition, red LED spectrum under RBPN, and red and blue light under ECBR nutrient solution significantly increased leaf stomatal conductance, net photosynthesis and transpiration rate, and intercellular CO2 concentration of LR variety. Phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mn) content in LR variety, and iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) content in both varieties increased upon exposure to blue and red LED light spectrum with RBPN method. Our results suggest that exposure to combination of red and blue light along with feeding plants using RBPN and ECBR methods can increase absorption of macro- and micronutrient elements and improve photosynthetic properties, and eventually increase lettuce yield with lower nitrate accumulation.

20.
Sci Rep ; 13(1): 22280, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097718

ABSTRACT

Among the metals contaminants, cadmium (Cd) is one of the most toxic elements in cultivated soils, causing loss of yield and productivity in plants. Recently, nanomaterials have been shown to mitigate the negative consequences of environmental stresses in different plants. However, little is known about foliar application of titanium dioxide nanoparticles (TiO2 NPs) to alleviate Cd stress in medicinal plants, and their dual interactions on essential oil production. The objective of this study was to investigate the effects of foliar-applied TiO2 NPs on growth, Cd uptake, chlorophyll fluorescence, photosynthetic pigments, malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, total phenols, anthocyanins, flavonoids, antioxidant enzymes (SOD, CAT and POD) activity and essential oil content of Mentha piperita L. (peppermint) under Cd stress. For this purpose, plants were grown in Cd-contaminated (0, 20, 40, and 60 mg L-1) soil, and different concentrations of TiO2 NPs (0, 75, and 150 mg L-1) were foliar sprayed at three times after full establishment until the beginning of flowering. Exposure to TiO2 NPs significantly (P < 0.01) increased shoot dry weight (37.8%) and the number of lateral branches (59.4%) and decreased Cd uptake in plant tissues as compared to the control. Application of TiO2 NPs increased the content of plastid pigments, and the ratio Fv/Fm (13.4%) as compared to the control. Additionally, TiO2 NPs reduced the stress markers, MDA and H2O2 contents and enhanced the activity of the phenylalanine ammonia-lyase (PAL) enzyme (60.5%), total phenols (56.1%), anthocyanins (42.6%), flavonoids (25.5%), and essential oil content (52.3%) in Cd-stressed peppermint compared to the control. The results also demonstrated that foliar spray of TiO2 NPs effectively improved the growth and chlorophyll fluorescence parameters and reduced Cd accumulation in peppermint, which was mainly attributed to the reduction of oxidative burst and enhancement of the enzymatic (SOD, CAT, and POD) antioxidant defense system due to the uptake of NPs. The findings provide insights into the regulatory mechanism of TiO2 NPs on peppermint plants growth, physiology and secondary metabolites production in Cd-contaminated soil.


Subject(s)
Nanoparticles , Oils, Volatile , Soil Pollutants , Cadmium/metabolism , Mentha piperita , Anthocyanins , Antioxidants/pharmacology , Antioxidants/metabolism , Hydrogen Peroxide , Nanoparticles/chemistry , Soil/chemistry , Chlorophyll/metabolism , Superoxide Dismutase/metabolism , Phytochemicals , Oils, Volatile/pharmacology , Phenols , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...