Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
BMJ Open ; 14(3): e076142, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490660

ABSTRACT

OBJECTIVE: Dipeptidase-1 (DPEP-1) is a recently discovered leucocyte adhesion receptor for neutrophils and monocytes in the lungs and kidneys and serves as a potential therapeutic target to attenuate inflammation in moderate-to-severe COVID-19. We aimed to evaluate the safety and efficacy of the DPEP-1 inhibitor, LSALT peptide, to prevent specific organ dysfunction in patients hospitalised with COVID-19. DESIGN: Phase 2a randomised, placebo-controlled, double-blinded, trial. SETTING: Hospitals in Canada, Turkey and the USA. PARTICIPANTS: A total of 61 subjects with moderate-to-severe COVID-19. INTERVENTIONS: Randomisation to LSALT peptide 5 mg intravenously daily or placebo for up to 14 days. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary endpoint was the proportion of subjects alive and free of respiratory failure and/or the need for renal replacement therapy (RRT). Numerous secondary and exploratory endpoints were assessed including ventilation-free days, and changes in kidney function or serum biomarkers. RESULTS: At 28 days, 27 (90.3%) and 28 (93.3%) of subjects in the placebo and LSALT groups were free of respiratory failure and the need for RRT (p=0.86). On days 14 and 28, the number of patients still requiring more intensive respiratory support (O2 ≥6 L/minute, non-invasive or invasive mechanical ventilation or extracorporeal membrane oxygenation) was 6 (19.4%) and 3 (9.7%) in the placebo group versus 2 (6.7%) and 2 (6.7%) in the LSALT group, respectively (p=0.14; p=0.67). Unadjusted analysis of ventilation-free days demonstrated 22.8 days for the LSALT group compared with 20.9 in the placebo group (p=0.4). LSALT-treated subjects had a significant reduction in the fold expression from baseline to end of treatment of serum CXCL10 compared with placebo (p=0.02). Treatment-emergent adverse events were similar between groups. CONCLUSION: In a Phase 2 study, LSALT peptide was demonstrated to be safe and tolerated in patients hospitalised with moderate-to-severe COVID-19. TRIAL REGISTRATION NUMBER: NCT04402957.


Subject(s)
Acute Kidney Injury , COVID-19 , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , SARS-CoV-2 , Proof of Concept Study , Double-Blind Method , Respiratory Distress Syndrome/prevention & control , Acute Kidney Injury/prevention & control , Treatment Outcome
2.
J Phys Condens Matter ; 36(23)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38437733

ABSTRACT

The ZnTe thin film is a potential material for optoelectronic devices in extreme temperature and radiation environments. In this report, the thermal conductivity of ZnTe films is measured non-invasively using the micro-Raman method and correlated with the phonon anharmonic effect. The evolution of crystalline ZnTe thin films from Te/ZnO bilayer by thermal annealing at 450 ∘C has been observed above the melting point of Te, which is confirmed from x-ray diffraction and high-resolution transmission electron microscopy. The ZnTe thin films illustrate three longitudinal phonon modes with higher harmonics of nLO (n= 3) at room temperature. Temperature-dependent Raman spectra in the range of 93-303 K are used to analyze the phonon anharmonicity from Raman shift, FWHM, and Phonon lifetime of the thin films. The Balkanski model is used to fit the anharmonicity-induced phonon frequency shift of nLO modes as a function of temperature, taking into account three- and four-phonon interactions. The intensity ratio of the I2LO/I1LOand I3LO/I2LOprovide information about the electron-phonon coupling strength, which is influenced by the anharmonic effect. The laser power-dependent Raman spectra are used to determine the thermal conductivity of the ZnTe films, which is found to be approximately 9.68 Wm-1K-1, remains relatively constant for all nLO modes, indicating that multi-phonon scattering process. The correlation between thermal conductivity and phonon anharmonicity can pave the way for understanding the phonon scattering process in ZnTe thin films for high-performance optoelectronic device applications in harsh conditions.

3.
J Fluoresc ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411860

ABSTRACT

Iron, an essential trace element exhibits detrimental effects on human health when present at higher or lower concentration than the required. Therefore, there is a pressing demand for sensitive and selective detection of Fe3+ in water, food etc. Unfortunately, in several instances, the traditional approaches suffer from a number of shortcomings like complicated procedures, limited sensitivity, poor selectivity and more expensive and time consuming. The scope of optical tuning and excellent photophysical properties of carbon- based nanomaterials like carbon dots (C-dots) and graphene dots (g-dots) have made them promising optical sensors of metal ions. Moreover, high surface area, superior stability of such materials contributes towards the fruitful development of sensors. The present review offered critical information on the fabrication and fluorimetric applications of these functional nanomaterials for sensitive and selective detection of Fe3+. An in-depth discussion on fluorescent C-dots made from naturally occurring materials and chemical techniques were presented. Effect of doping in C-dots was also highlighted in terms of improved fluorescence response and selectivity. In a similar approach g-dots were also discussed. Many of these sensors exhibited great selectivity, superior sensitivity, high quantum yield, robust chemical and photochemical stability and real-time applicability. Further improvement in these factors can be targeted to develop new sensors.

4.
ACS Nano ; 17(20): 20537-20550, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37792563

ABSTRACT

Microsupercapacitors (micro-SCs) with mechanical flexibility have the potential to complement or even replace microbatteries in the portable electronics sector, particularly for portable biomonitoring devices. The real-time biomonitoring of the human body's physical status using lightweight, flexible, and wearable micro-SCs is important to consider, but the main limitation is, however, the low energy density of micro-SCs as compared to microbatteries. Here using a temporally and spatially controlled picosecond pulsed laser, we developed high-energy-density micro-SCs integrated with a force sensing device to monitor a human body's radial artery pulses. The photochemically synthesized spherical laser-induced MXene (Ti3C2Tx)-derived oxide nanoparticles uniformly attached to laser-induced graphene (LIG) act as active electrode materials for micro-SCs. The molecular dynamics simulations and detailed spectroscopic analysis reveal the synergistic interfacial interaction mechanism of Ti-O-C covalent bonding between MXene and LIG. The incorporation of MXene nanosheets improves the graphene sheet alignment and ion transport while minimizing self-restacking. Furthermore, the micro-SCs based on a nano-MXene-LIG hybrid demonstrate high mechanical flexibility, durability, ultrahigh energy density (21.16 × 10-3 mWh cm-2), and excellent capacitance (∼100 mF cm-2 @ 10 mV s-1) with long cycle life (91% retention after 10 000 cycles). Such a single-step roll-to-roll highly reproducible manufacturing technique using a picosecond pulsed laser to induce MXene-derived spherical oxide nanoparticles (size of quantum dots) attached uniformly to laser-induced graphene for biomedical device fabrication is expected to find a wide range of applications.


Subject(s)
Graphite , Humans , Arteries , Lasers , Oxides
5.
Methods ; 217: 27-35, 2023 09.
Article in English | MEDLINE | ID: mdl-37399850

ABSTRACT

Schiff base probes (1 and 2) made from o-phenylenediamine and o-aminophenol were appeared as highly selective fluorimetric chemosensor of Cu2+ and Al3+ ions respectively. Strong fluorescence emission of probe 1 at 415 nm (excitation at 350 nm) was instantly turned off on addition of Cu2+. Very weak fluorescence of probe 2 at 506 nm (excitation at 400 nm) was immediately turned on specifically by Al3+. Job's plot and ESI-MS results suggested 1:1 molar stoichiometric ratio of metal ion and probe in their respective complexes. Probe 1 and 2 had demonstrated very low detection limit (9.9 and 2.5 nM respectively). Binding of Cu2+ with probe 1 was found chemically reversible on addition of EDTA, while complexation between Al3+ and probe 2 was not reversible. On the basis of density functional theory (DFT) and spectroscopic results, probable mode of sensing of the metal ions by the probes were proposed. Quenching of the fluorescence of probe 1 by Cu2+ was attributed to the extensive transfer of charge from the probe molecule to paramagnetic copper ion. Whereas, in the Al3+-complex of probe 2, photo-induced electron transfer (PET) process from the imine nitrogen to salicylaldehyde moiety was restricted and thereby the weak emission intensity of probe 2 was enhanced significantly. Effective pH range of sensing the metal ions by probe 1 and 2 were 4 to 8 and 6 to 10 respectively. Probe 1 was also applied in the design of a logic gate for Cu2+ detection. Moreover, probe 1 and 2 was also used in water sample analysis for quantitative estimation of Cu2+ and Al3+ respectively.


Subject(s)
Copper , Schiff Bases , Copper/chemistry , Schiff Bases/chemistry , Metals , Ions , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry
6.
ChemSusChem ; 15(23): e202201490, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36333103

ABSTRACT

The contemporary critical energy crisis demands the fast and cost-effective preparation of supercapacitors to replace old-fashioned batteries. 3D-printing has been established as a fast, cheap, and reliable new manufacturing technique that enables the preparation of such devices.. Unfortunately, carbon-based filaments used in 3D printing lack the necessary electrical properties to build supercapacitors by themselves and have to be combined with other materials to reach their full potential. In this study, carbon-based 3D-printed carbon electrodes (3D-PCE) have been combined with two polyoxometalates (that share the same redox cluster) by drop casting of the inorganic cluster mixed with a conducting slurry. The modified electrodes show higher capacitances than reference carbon electrodes showing the exceptional properties of the polyoxometalates. Moreover, the different nature of the polyoxometalate counter ions allows for their distinct deposition, giving rise to a different coverage of the surface of the 3D-PCE. The different coverage and the nature of the interaction of the counter ion with the electrolyte significantly modify the capacitance and resistance of the materials, playing a key role that should not be overlooked during their preparation.

7.
Nanotechnology ; 34(7)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36384032

ABSTRACT

Manipulating light at the sub-wavelength level is a crucial feature of surface plasmon resonance (SPR) properties for a wide range of nanostructures. Noble metals like Au and Ag are most commonly used as SPR materials. Significant attention is being devoted to identify and develop non-noble metal plasmonic materials whose optical properties can be reconfigured for plasmonic response by structural phase changes. Chromium (Cr) which supports plasmon resonance, is a transition metal with shiny finished, highly non-corrosive, and bio-compatible alloys, making it an alternative plasmonic material. We have synthesized Cr micro-rods from a bi-layer of Cr/Au thin films, which evolves from face centered cubic to hexagonal close packed (HCP) phase by thermal activation in a forming gas ambient. We employed optical absorption spectroscopy and cathodoluminescence (CL) imaging spectroscopy to observe the plasmonic modes from the Cr micro-rod. The origin of three emission bands that spread over the UV-Vis-IR energy range is established theoretically by considering the critical points of the second-order derivative of the macroscopic dielectric function obtained from density functional theory (DFT) matches with interband/intraband transition of electrons observed in density of states versus energy graph. The experimentally observed CL emission peaks closely match thes-dandd-dband transition obtained from DFT calculations. Our findings on plasmonic modes in Cr(HCP) phase can expand the range of plasmonic material beyond noble metal with tunable plasmonic emissions for plasmonic-based optical technology.

8.
Luminescence ; 37(7): 1200-1207, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35560509

ABSTRACT

Interactions between bovine γ-globulin (BGG) and borohydride-capped silver nanoparticles (BAgNPs) were studied using dynamic light scattering (DLS) and spectroscopic techniques such as UV-vis spectroscopy, fluorescence, and circular dichroism. The results were compared with earlier reported interactions between γ-globulin and citrate-coated AgNPs (CAgNPs). BAgNPs were synthesized and characterized. Irrespective of the coating on AgNPs, nanoparticles had formed ground-state complexes with the protein. CAgNPs, as well as BAgNPs had caused static quenching of tryptophan (Trp) fluorescence of the protein. The change in the capping agent from citrate to borohydride weakened the binding of nanoparticles with the protein. But the same change in capping agent had increased the fluorescence quenching efficiency of AgNPs. Hydrogen bonding and van der Waals interactions were involved in BGG-BAgNPs complex similar to the CAgNPs complex with γ-globulin. Polarity of the Trp microenvironment in BGG was not altered using BAgNPs as opposed to CAgNPs, as supported using synchronous and three-dimensional fluorescence. Resonance light scattering experiments also suggested nano-bio conjugation. Far-UV and near-UV circular dichroism (CD) spectra respectively pointed towards changes in the secondary and tertiary structure of BGG by BAgNPs, which was not observed for CAgNPs.


Subject(s)
Metal Nanoparticles , Silver , Animals , Borohydrides , Cattle , Circular Dichroism , Citrates , Metal Nanoparticles/chemistry , Silver/chemistry , Spectrometry, Fluorescence/methods , gamma-Globulins
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121344, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35605420

ABSTRACT

The chaperone activity of human αA-crystallin (HAA) against aggregation of human γD-crystallin (HGD) was enhanced by gold nanoparticles (AuNPs). Chaperone activity of HAA was almost doubled in the presence of 5.5 nM gold nanoparticles (AuNPs). To decipher this effect at molecular level, interactions between HAA and AuNPs were studied using fluorescence and circular dichroism spectroscopic techniques. The nanoparticles were synthesized and characterized by using TEM and dynamic light scattering (DLS). TEM and DLS studies revealed that bioconjugation of AuNPs with HAA did not cause any significant change in the size of the nanoparticles. AuNPs had caused static quenching of tryptophan (Trp) fluorescence, which was confirmed through determination of excited state lifetime of Trp residue of HAA in absence and the presence of AuNPs. The association and quenching constant for HAA-AuNPs conjugation were âˆ¼ 109 M-1. Hydrogen bonding and van der Waals interactions were found to be involved in HAA-AuNPs complex. Polarity of Trp microenvironment in HAA was not perturbed by AuNPs as supported by synchronous and three-dimensional fluorescence spectroscopy. Far-UV CD spectra suggested that the secondary structure of HAA was not significantly affected by AuNPs.


Subject(s)
Gold , Metal Nanoparticles , Circular Dichroism , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Protein Folding , Protein Structure, Secondary , Spectrometry, Fluorescence , Tryptophan
10.
Mol Divers ; 26(1): 215-228, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33675510

ABSTRACT

Novel coronavirus disease 2019 (COVID-19) emerges as a serious threat to public health globally. The rapid spreading of COVID-19, caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), proclaimed the multitude of applied research needed not only to save the human health but also for the environmental safety. As per the recent World Health Organization reports, the novel corona virus may never be wiped out completely from the world. In this connection, the inhibitors already designed against different targets of previous human coronavirus (HCoV) infections will be a great starting point for further optimization. Pinpointing biochemical events censorious to the HCoV lifecycle has provided two proteases: a papain-like protease (PLpro) and a 3C-like protease (3CLpro) enzyme essential for viral replication. In this study, naphthyl derivatives inhibiting PLpro enzyme were subjected to robust molecular modelling approaches to understand different structural fingerprints important for the inhibition. Here, we cover two main aspects such as (a) exploration of naphthyl derivatives by classification QSAR analyses to find important fingerprints that module the SARS-CoV PLpro inhibition and (b) implications of naphthyl derivatives against SARS-CoV-2 PLpro enzyme through detailed ligand-receptor interaction analysis. The modelling insights will help in the speedy design of potent broad spectrum PLpro inhibitors against infectious SARS-CoV and SARS-CoV-2 in the future.


Subject(s)
COVID-19 Drug Treatment , Severe acute respiratory syndrome-related coronavirus , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Discovery , Humans , Papain , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
11.
Small Methods ; 5(8): e2100451, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34927869

ABSTRACT

Recently, 2D nanomaterials such as transition metal carbides or nitrides (MXenes) and transition metal dichalcogenides (TMDs) have attracted ample attention in the field of energy storage devices specifically in supercapacitors (SCs) because of their high metallic conductivity, wide interlayer spacing, large surface area, and 2D layered structures. However, the low potential window (ΔV ≈ 0.6 V) of MXene e.g., Ti3 C2 Tx limits the energy density of the SCs. Herein, asymmetric supercapacitors (ASCs) are fabricated by assembling the exfoliated Ti3 C2 Tx (Ex-Ti3 C2 Tx ) as the negative electrode and transition metal chalcogenide (MoS3- x ) coated 3D-printed nanocarbon framework (MoS3- x @3DnCF) as the positive electrode utilizing polyvinyl alcohol (PVA)/H2 SO4 gel electrolyte, which provides a wide ΔV of 1.6 V. The Ex-Ti3 C2 Tx possesses wrinkled sheets which prevent the restacking of Ti3 C2 Tx 2D layers. The MoS3- x @3DnCF holds a porous structure and offers diffusion-controlled intercalated pseudocapacitance that enhances the overall capacitance. The 3D printing allows a facile fabrication of customized shaped MoS3- x @3DnCF electrodes. Employing the advantages of the 3D-printing facilities, two different ASCs, such as sandwich- and interdigitated-configurations are fabricated. The customized ASCs provide excellent capacitive performance. Such ASCs combining the MXene and electroactive 3D-printed nanocarbon framework can be used as potential energy storage devices in modern electronics.

12.
Langmuir ; 37(24): 7430-7441, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34115512

ABSTRACT

The evolution of high electromagnetic absorption materials is essential in the fast growing electronic industry in overcoming electromagnetic pollution. In view of this, a series of Ni nanoparticle-decorated functionalized graphene sheets (FG/Ni) are synthesized by a solvothermal method using different ratios of FG/Ni precursors. Subsequently, FG/Ni is subjected to in situ polymerization of aniline to form FG/Ni/PANI ternary composites and characterized. The total electromagnetic interference shielding efficiency (SET) measurements on FG/Ni/PANI with an optimized FG/Ni ratio (50 mg:600 mg NiCl2·6H2O) exhibit enhanced performance, i.e., ∼47-65 dB (2-3.8 GHz) and ∼65-45 dB (3.8-8 GHz), following absorption as the dominant mechanism due to the matching of dielectric loss and magnetic loss. It is anticipated that such excellent performance of robust FG/Ni/PANI ternary composites at a very low thickness (0.5 mm) has great potential in the application of microwave-absorbing materials.

13.
J Mol Struct ; 1237: 130366, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33814612

ABSTRACT

Fragment based drug discovery (FBDD) by the aid of different modelling techniques have been emerged as a key drug discovery tool in the area of pharmaceutical science and technology. The merits of employing these methods, in place of other conventional molecular modelling techniques, endorsed clear detection of the possible structural fragments present in diverse set of investigated compounds and can create alternate possibilities of lead optimization in drug discovery. In this work, two fragment identification tools namely SARpy and Laplacian-corrected Bayesian analysis were used for previous SARS-CoV PLpro and 3CLpro inhibitors. A robust and predictive SARpy based fragments identification was performed which have been validated further by Laplacian-corrected Bayesian model. These comprehensive approaches have advantages since fragments are straight forward to interpret. Moreover, distinguishing the key molecular features (with respect to ECFP_6 fingerprint) revealed good or bad influences for the SARS-CoV protease inhibitory activities. Furthermore, the identified fragments could be implemented in the medicinal chemistry endeavors of COVID-19 drug discovery.

14.
ACS Omega ; 6(7): 4582-4596, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33644566

ABSTRACT

This study is focused on the preparation of the CuS/RGO nanocomposite via the hydrothermal method using GO and Cu-DTO complex as precursors. X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman and X-ray photoelectron spectroscopy study revealed the formation of the CuS/RGO nanocomposite with improved crystallinity, defective nanostructure, and the presence of the residual functional group in the RGO sheet. The morphological study displayed the transformation of CuS from nanowire to quantum dots with the incorporation of RGO. The galvanostatic charge/discharge curve showed that the CuS/RGO nanocomposite (12 wt % Cu-DTO complex) has tremendous and outperforming specific capacitance of 3058 F g-1 at 1 A g-1 current density with moderate cycling stability (∼60.3% after 1000 cycles at 10 A g-1). The as-prepared nanocomposite revealed excellent improvement in specific capacitance, cycling stability, Warburg impedance, and interfacial charge transfer resistance compared to neat CuS. The fabricated nanocomposites were also investigated for their bulk DC electrical conductivity and EMI shielding ability. It was observed that the CuS/RGO nanocomposite (9 wt % Cu-DTO) exhibited a total electromagnetic shielding efficiency of 64 dB at 2.3 GHz following absorption as a dominant shielding mechanism. Such a performance is ascribed to the presence of interconnected networks and synergistic effects.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 254: 119610, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-33684850

ABSTRACT

An essential trace element copper plays several physiological roles in living systems. But at excess concentration, it exerts toxicity and becomes associated with numerous disorders. In this article, we have reviewed the recent developments (from 2017 to 2020) in the field of fluorescence-based chemosensors for the detection of Cu2+ ion. The sensing probes which were built to work through transfer of photo-induced electron (PET), excited-state intramolecular proton (ESIPT) and Förster resonance energy (FRET) mechanisms have been included in this review. Emphasis is given on the design, sensitivity and response of the probe molecules for the detection of Cu2+ ion. Using suitable examples, applications of these three recognition mechanisms for the probing of copper ion have been addressed.

16.
Nanoscale ; 13(11): 5744-5756, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33724279

ABSTRACT

The 3D-printing technology offers an innovative approach to develop energy storage devices because of its ability to create facile and low cost customized electrodes for modern electronics. Among the recently explored 2D nanomaterials beyond graphene, molybdenum sulfide (MoSx) has been found as a promising material for electrochemical energy storage devices. In this study, a nanocarbon-based conductive filament was 3D-printed and then activated by solvent treatment, followed by electrodeposition of MoSx on the printed nanocarbon electrode's surface. The conductive nanocarbon fibers allow a coaxial deposition of a thin MoSx layer. The MoSx layer contributes to pseudocapacitive charge storage mechanisms to obtain higher capacitances. In a three-electrode test system with 1 M H2SO4 as electrolyte, the MoSx coated 3D-printed electrode (MoSx@3D-PE) electrode shows a capacitance of 27 mF cm-2 at the scan rate of 10 mV s-1, and a capacitance of 11.6 mF cm-2 at the current density of 0.13 mA cm-2. Extending to solid-state supercapacitor (SS-SC), the cells were fabricated using the MoSx@3D-PE with different designs and polyvinyl alcohol (PVA)/H2SO4 as gel electrolyte. An interdigital-shaped SS-SC provided a specific capacitance of 4.15 mF cm-2 at a current density of 0.05 mA cm-2. Moreover, it showed a stable cycle life where 10% capacitance loss was found after 10 000 cycles. Briefly, this study reports the integration of 3D-printing and room-temperature electrodeposition techniques allowing a simple way of fabricating customized free-standing 3D-electrodes for use in SC applications.

17.
Phytomedicine ; 85: 153523, 2021 May.
Article in English | MEDLINE | ID: mdl-33662771

ABSTRACT

BACKGROUND: Extensive research over the past several decades, explored that the natural compounds contain different plant secondary metabolites and have the potential to inhibit breast cancer resistance protein (BCRP). PURPOSE: To identify crucial molecular fingerprints of some natural products for the inhibition of breast cancer resistance protein and also to screen out some potent natural BCRP inhibitors. STUDY DESIGN: Multiple modelling strategies were applied with three main mottos: (a) Generation of robust classification models to identify the linear and non-linear relationships among the natural compounds and the inhibition of BCRP, (b) Identification of important structural fingerprints that modulate BCRP inhibition and screening of natural database to find the probable hit molecules, (c) Comprehensive ligand-receptor interactions analysis of those against the putative breast cancer resistant protein through molecular docking analysis. METHODS: Monte Carlo optimization and SPCI analysis was used to identify important structural fingerprints. QSARCo. and swissADME analysis were used for screening and prediction of hits. Finally, docking analysis was performed for interaction study. RESULTS: In this study, some important structural fingerprints of BCRP inhibitors were identified. Additionally, eleven natural anti-cancer compounds were predicted to be active against the BCRP and also satisfy the different drug-likeliness properties. Among them, apigenin was found to have better binding affinities against the putative target as obtained from molecular docking analysis. CONCLUSION: This study is an attempt to understand about the molecular fingerprints of natural compounds for the inhibition of BCRP and also to dig out some novel natural inhibitors against BCRP.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Biological Products/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Drug Discovery , Drug Resistance, Neoplasm , Humans , Molecular Docking Simulation , Neoplasms , Protein Binding , Protein Structure, Tertiary , Quantitative Structure-Activity Relationship
18.
Langmuir ; 37(6): 2213-2226, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33541084

ABSTRACT

The present work reports on the fabrication of a lightweight microwave absorber comprising MnCo2O4 prepared from the urea complex of manganese (Mn)/cobalt (Co) and nitrogen-doped reduced graphite oxide (NRGO) by facile hydrothermal method followed by annealing process and characterized. The phase analysis, compositional, morphological, magnetic, and conductivity measurements indicated dispersion of paramagnetic MnCo2O4 spherical particles on the surface of NRGO. Our findings also showed that Mn, Co-urea complex, and GO in the weight ratio of 1:4 (NGMC3) exhibited maximum shielding efficiency in the range of 55-38 dB with absorption as an overall dominant shielding mechanism. The reflection loss of NGMC3 was found to be in the range of -90 to -77 dB with minima at -103 dB (at 2.9 GHz). Such outstanding electromagnetic wave absorption performance of NRGO/MnCo2O4 nanocomposite compared to several other metal cobaltates could be attributed to the formation of percolated network assisted electronic polarization, interfacial polarization and associated relaxation losses, conductance loss, dipole polarization and corresponding relaxation loss, impedance matching, and magnetic resonance to some extent.

19.
J Biomol Struct Dyn ; 39(12): 4279-4289, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32469293

ABSTRACT

To inhibit the formation of amyloid fibrils by human γd-crystallin (HGD), a series of four flavonoids (quercertin, rutin, morin and hesperetin) was tested. Only morin had demonstrated significant inhibition of HGD fibrillation. Results from fluorimetric assay techniques (using thioflavin T and ANS), FTIR, circular dichroism and microscopic imaging (fluorescence microscopy and transmission electron microscopy) confirmed HGD fibrillation inhibition by morin. HGD-morin complex formation at ground state resulted tryptophan fluorescence quenching through static mechanism, which was also confirmed by determining the excited-state life time of HGD tryptophan residues. Förster resonance energy transfer occurs from HGD to morin. Synchronous, three-dimensional fluorescence, FTIR and circular dichroism results suggest that major changes in HGD conformation did not occur on binding with morin. The interactions between HGD and morin involve hydrogen bonding and/or van der Waals forces. Docking predictions also support experimental results.Communicated by Ramaswamy H. Sarma.


Subject(s)
Amyloid , Flavonoids , Circular Dichroism , Humans , Protein Binding , Spectrometry, Fluorescence , Tryptophan/metabolism
20.
J Biomol Struct Dyn ; 39(5): 1811-1818, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32131700

ABSTRACT

Different post-translational changes in eye lens crystallin proteins contribute towards the development of cataract. We have studied in vitro oxidative modification of tryptophan (Trp) residues of human γD-crystallin (HGD) towards formation of N-formylkynurenine (NFK) associated with cataractogenesis. This oxidation was found to be inhibited by quercetin at relatively low concentration. Interactions between quercetin and HGD were further studied using fluorescence techniques. Binding and quenching constants were determined as ∼104 M-1. Static quenching of fluorescence due to HGD-quercetin complex formation at ground state was confirmed by finding excited state life time of Trp residues. Energy transfer occurred between the protein and quercetin. Hydrogen bonding and/or van der Waals interactions were involved between HGD and quercetin. Synchronous and three-dimensional fluorescence along with far-UV CD studies suggested no major conformational alterations occurred in HGD due to quercetin binding. Experimental observations were supported by the docking results.Communicated by Ramaswamy H. Sarma.


Subject(s)
Quercetin , Tryptophan , Energy Transfer , Humans , Oxidation-Reduction , Spectrometry, Fluorescence , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...