Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(6): e2219199120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36724255

ABSTRACT

Immune checkpoint blockers (ICBs) have failed in all phase III glioblastoma trials. Here, we found that ICBs induce cerebral edema in some patients and mice with glioblastoma. Through single-cell RNA sequencing, intravital imaging, and CD8+ T cell blocking studies in mice, we demonstrated that this edema results from an inflammatory response following antiprogrammed death 1 (PD1) antibody treatment that disrupts the blood-tumor barrier. Used in lieu of immunosuppressive corticosteroids, the angiotensin receptor blocker losartan prevented this ICB-induced edema and reprogrammed the tumor microenvironment, curing 20% of mice which increased to 40% in combination with standard of care treatment. Using a bihemispheric tumor model, we identified a "hot" tumor immune signature prior to losartan+anti-PD1 therapy that predicted long-term survival. Our findings provide the rationale and associated biomarkers to test losartan with ICBs in glioblastoma patients.


Subject(s)
Glioblastoma , Animals , Mice , Glioblastoma/pathology , Losartan/pharmacology , Losartan/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , CD8-Positive T-Lymphocytes , Edema , Tumor Microenvironment
2.
Biomedicines ; 10(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36140392

ABSTRACT

Immunotherapies with immune checkpoint inhibitors or adoptive cell transfer have become powerful tools to treat cancer. These treatments act via overcoming or alleviating tumor-induced immunosuppression, thereby enabling effective tumor clearance. Glioblastoma (GBM) represents the most aggressive, primary brain tumor that remains refractory to the benefits of immunotherapy. The immunosuppressive immune tumor microenvironment (TME), genetic and cellular heterogeneity, and disorganized vasculature hinder drug delivery and block effector immune cell trafficking and activation, consequently rendering immunotherapy ineffective. Within the TME, the mutual interactions between tumor, immune and endothelial cells result in the generation of positive feedback loops, which intensify immunosuppression and support tumor progression. We focus here on the role of aberrant tumor vasculature and how it can mediate hypoxia and immunosuppression. We discuss how immune cells use immunosuppressive signaling for tumor progression and contribute to the development of resistance to immunotherapy. Finally, we assess how a positive feedback loop between vascular normalization and immune cells, including myeloid cells, could be targeted by combinatorial therapies with immune checkpoint blockers and sensitize the tumor to immunotherapy.

3.
Nat Commun ; 12(1): 2582, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976133

ABSTRACT

Immune checkpoint blockers (ICBs) have failed in all phase III glioblastoma (GBM) trials. Here, we show that regulatory T (Treg) cells play a key role in GBM resistance to ICBs in experimental gliomas. Targeting glucocorticoid-induced TNFR-related receptor (GITR) in Treg cells using an agonistic antibody (αGITR) promotes CD4 Treg cell differentiation into CD4 effector T cells, alleviates Treg cell-mediated suppression of anti-tumor immune response, and induces potent anti-tumor effector cells in GBM. The reprogrammed GBM-infiltrating Treg cells express genes associated with a Th1 response signature, produce IFNγ, and acquire cytotoxic activity against GBM tumor cells while losing their suppressive function. αGITR and αPD1 antibodies increase survival benefit in three experimental GBM models, with a fraction of cohorts exhibiting complete tumor eradication and immune memory upon tumor re-challenge. Moreover, αGITR and αPD1 synergize with the standard of care treatment for newly-diagnosed GBM, enhancing the cure rates in these GBM models.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm/drug effects , Glioblastoma/drug therapy , Glucocorticoid-Induced TNFR-Related Protein/agonists , T-Lymphocytes, Regulatory/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor/transplantation , Cellular Reprogramming/drug effects , Cellular Reprogramming/immunology , Disease Models, Animal , Female , Glioblastoma/immunology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunologic Memory/drug effects , Male , Mice , Mice, Knockout , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
4.
Nat Biomed Eng ; 3(3): 230-245, 2019 03.
Article in English | MEDLINE | ID: mdl-30948807

ABSTRACT

The compression of brain tissue by a tumour mass is believed to be a major cause of the clinical symptoms seen in patients with brain cancer. However, the biological consequences of these physical stresses on brain tissue are unknown. Here, via imaging studies in patients and by using mouse models of human brain tumours, we show that a subgroup of primary and metastatic brain tumours, classified as nodular on the basis of their growth pattern, exert solid stress on the surrounding brain tissue, causing a decrease in local vascular perfusion as well as neuronal death and impaired function. We demonstrate a causal link between solid stress and neurological dysfunction by applying and removing cerebral compression, which respectively mimic the mechanics of tumour growth and of surgical resection. We also show that, in mice, treatment with lithium reduces solid-stress-induced neuronal death and improves motor coordination. Our findings indicate that brain-tumour-generated solid stress impairs neurological function in patients, and that lithium as a therapeutic intervention could counter these effects.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/physiopathology , Lithium/therapeutic use , Stress, Physiological , Animals , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Brain Neoplasms/blood supply , Brain Neoplasms/diagnostic imaging , Cell Line, Tumor , Humans , Mice, Nude , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Perfusion
5.
Cancer Cell ; 33(5): 874-889.e7, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29681511

ABSTRACT

Gliomas comprise heterogeneous malignant glial and stromal cells. While blood vessel co-option is a potential mechanism to escape anti-angiogenic therapy, the relevance of glial phenotype in this process is unclear. We show that Olig2+ oligodendrocyte precursor-like glioma cells invade by single-cell vessel co-option and preserve the blood-brain barrier (BBB). Conversely, Olig2-negative glioma cells form dense perivascular collections and promote angiogenesis and BBB breakdown, leading to innate immune cell activation. Experimentally, Olig2 promotes Wnt7b expression, a finding that correlates in human glioma profiling. Targeted Wnt7a/7b deletion or pharmacologic Wnt inhibition blocks Olig2+ glioma single-cell vessel co-option and enhances responses to temozolomide. Finally, Olig2 and Wnt7 become upregulated after anti-VEGF treatment in preclinical models and patients. Thus, glial-encoded pathways regulate distinct glioma-vascular microenvironmental interactions.


Subject(s)
Brain Neoplasms/blood supply , Glioma/blood supply , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendroglia/microbiology , Wnt Proteins/metabolism , Animals , Bevacizumab/pharmacology , Blood-Brain Barrier/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Glioma/drug therapy , Glioma/metabolism , Humans , Mice , Neoplasm Transplantation , Oligodendrocyte Transcription Factor 2/genetics , Temozolomide/pharmacology , Tumor Cells, Cultured , Tumor Microenvironment , Wnt Proteins/genetics , Wnt Signaling Pathway/drug effects
6.
Ann Neurol ; 78(6): 887-900, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26312599

ABSTRACT

OBJECTIVE: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common inherited small-vessel disease, is associated with vascular aggregation of mutant Notch3 protein, dysfunction of cerebral vessels, and dementia. Pericytes, perivascular cells involved in microvascular function, express Notch3. Therefore, we hypothesize that these cells may play a role in the pathogenesis of CADASIL. METHODS: Two-, 7-, and 12-month-old CADASIL mutant mice (TgNotch3(R169C) ) and wild-type controls were examined regarding Notch3 aggregation in pericytes, the coverage of cerebral vessels by pericytes, pericyte numbers, capillary density, blood-brain barrier (BBB) integrity, astrocytic end-feet, and the expression of astrocytic gap junction and endothelial adherens junction protein using immunostaining and Western blot analysis. In addition, we examined cerebrovascular CO2 reactivity using laser Doppler fluxmetry and in vivo microscopy. RESULTS: With increasing age, mutated Notch3 aggregated around pericytes and smooth muscle cells. Notch3 aggregation caused significant reduction of pericyte number and coverage of capillaries by pericyte processes (p < 0.01). These changes were associated with detachment of astrocytic end-feet from cerebral microvessels, leakage of plasma proteins, reduction in expression of endothelial adherens junction protein, and reduced microvascular reactivity to CO2 . Smooth muscle cells were not affected by Notch3 accumulation. INTERPRETATION: Our results show that pericytes are the first cells affected by Notch3 aggregation in CADASIL mice. Pericyte pathology causes opening of the BBB and microvascular dysfunction. Therefore, protecting pericytes may represent a novel therapeutic strategy for vascular dementia.


Subject(s)
Blood-Brain Barrier/pathology , CADASIL/etiology , Capillaries/pathology , Cerebral Cortex/blood supply , Pericytes/pathology , Receptors, Notch/metabolism , Age Factors , Animals , CADASIL/metabolism , CADASIL/pathology , Disease Models, Animal , Mice , Mice, Transgenic , Mutation , Pericytes/metabolism , Random Allocation , Receptor, Notch3 , Receptors, Notch/genetics , Single-Blind Method
7.
J Cereb Blood Flow Metab ; 35(9): 1445-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26058694

ABSTRACT

Aging leads to a gradual decline in the fidelity of cerebral blood flow (CBF) responses to neuronal activation, resulting in an increased risk for stroke and dementia. However, it is currently unknown when age-related cerebrovascular dysfunction starts or which vascular components and functions are first affected. The aim of this study was to examine the function of microcirculation throughout aging in mice. Microcirculation was challenged by inhalation of 5% and 10% CO2 or by forepaw stimulation in 6-week, 8-month, and 12-month-old FVB/N mice. The resulting dilation of pial vessels and increase in CBF was measured by intravital fluorescence microscopy and laser Doppler fluxmetry, respectively. Neurovascular coupling and astrocytic endfoot Ca(2+) were measured in acute brain slices from 18-month-old mice. We did not reveal any changes in CBF after CO2 reactivity up to an age of 12 months. However, direct visualization of pial vessels by in vivo microscopy showed a significant, age-dependent loss of CO2 reactivity starting at 8 months of age. At the same age neurovascular coupling was also significantly affected. These results suggest that aging does not affect cerebral vessel function simultaneously, but starts in pial microvessels months before global changes in CBF are detectable.


Subject(s)
Aging/metabolism , Astrocytes/metabolism , Cerebral Arteries/physiopathology , Cerebrovascular Circulation , Vasodilation , Aging/pathology , Animals , Astrocytes/pathology , Calcium/metabolism , Carbon Dioxide/metabolism , Cerebral Arteries/metabolism , Cerebral Arteries/pathology , Male , Mice
8.
Toxicol In Vitro ; 28(4): 538-43, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24412621

ABSTRACT

The flavonoid 7-mono-O-(ß-hydroxyethyl)-rutoside (monoHER) is an effective protector against doxorubicin induced toxicity which has been related to the antioxidant activity of monoHER. The present study examines the potential relevance of the direct scavenging activity of the flavonoid. The potency of the direct antioxidant effect was confirmed by its instantaneous protection against intracellular oxidative stress in human umbilical vein endothelial cells at therapeutically achievable concentrations (EC50=60 nM) underpinning the involvement of a direct scavenging activity. This direct effect of monoHER is substantiated by (i) its site specific scavenging effect, i.e. on a molecular level monoHER is positioned at the location of radical formation, (ii) its position in the antioxidant network, i.e. on a biochemical level oxidized monoHER quickly reacts with ascorbate or glutathione, (iii) its location in the vascular system, i.e. on a cellular level monoHER is localized in the endothelial and smooth muscle cells in the vascular wall. It is concluded that the flavonoid monoHER can display a physiologically important direct antioxidant effect.


Subject(s)
Antioxidants/pharmacology , Endothelial Cells/drug effects , Rutin/analogs & derivatives , Rutin/pharmacology , Animals , Carotid Arteries/drug effects , Cell Survival , Cells, Cultured , Humans , Hydroxyethylrutoside/analogs & derivatives , Hydroxyethylrutoside/pharmacology , Hydroxyl Radical , Mice , Mice, Inbred C57BL , Oxidative Stress
9.
PLoS One ; 9(1): e86135, 2014.
Article in English | MEDLINE | ID: mdl-24465919

ABSTRACT

RATIONALE AND OBJECTIVE: Arginase-1 is an important component of the intricate mechanism regulating arginine availability during immune responses and nitric oxide synthase (NOS) activity. In this study Arg1(fl/fl)/Tie2-Cre(tg/-) mice were developed to investigate the effect of arginase-1 related arginine depletion on NOS2- and NOS3-dependent NO production and jejunal microcirculation under resting and endotoxemic conditions, in mice lacking arginase-1 in endothelial and hematopoietic cells. METHODS AND RESULTS: Arginase-1-deficient mice as compared with control mice exhibited higher plasma arginine concentration concomitant with enhanced NO production in endothelial cells and jejunal tissue during endotoxemia. In parallel, impaired jejunal microcirculation was observed in endotoxemic conditions. Cultured bone-marrow-derived macrophages of arginase-1 deficient animals also presented a higher inflammatory response to endotoxin than control littermates. Since NOS2 competes with arginase for their common substrate arginine during endotoxemia, Nos2 deficient mice were also studied under endotoxemic conditions. As Nos2(-/-) macrophages showed an impaired inflammatory response to endotoxin compared to wild-type macrophages, NOS2 is potentially involved. A strongly reduced NO production in Arg1(fl/fl)/Tie2-Cre(tg/-) mice following infusion of the NOS2 inhibitor 1400W further implicated NOS2 in the enhanced capacity to produce NO production Arg1(fl/fl)/Tie2-Cre(tg/-) mice. CONCLUSIONS: Reduced arginase-1 activity in Arg1(fl/fl)/Tie2-Cre(tg/-) mice resulted in increased inflammatory response and NO production by NOS2, accompanied by a depressed microcirculatory flow during endotoxemia. Thus, arginase-1 deficiency facilitates a NOS2-mediated pro-inflammatory activity at the expense of NOS3-mediated endothelial relaxation.


Subject(s)
Arginase/metabolism , Arginine/blood , Endotoxemia/blood , Endotoxemia/enzymology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/biosynthesis , Animals , Cell Count , Citrulline/blood , Cytokines/biosynthesis , Integrases/metabolism , Jejunum/blood supply , Jejunum/enzymology , Jejunum/pathology , Lipopolysaccharides , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microcirculation , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Nitrites/metabolism , Organ Specificity/drug effects , Ornithine/blood , Perfusion , Peroxidase/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, TIE-2/metabolism
10.
PLoS One ; 8(9): e75331, 2013.
Article in English | MEDLINE | ID: mdl-24086509

ABSTRACT

To study the role and (sub) cellular nitric oxide (NO) constitution in various disease processes, its direct and specific detection in living cells and tissues is a major requirement. Several methods are available to measure the oxidation products of NO, but the detection of NO itself has proved challenging. We visualized NO production using a NO-sensitive copper-based fluorescent probe (Cu 2FL2E) and two-photon laser scanning microscopy (TPLSM). Cu 2FL2E demonstrated high sensitivity and specificity for NO synthesis, combined with low cytotoxicity. Furthermore, Cu 2FL2E showed superior sensitivity over the conventionally used Griess assay. NO specificity of Cu 2FL2E was confirmed in vitro in human coronary arterial endothelial cells and porcine aortic endothelial cells using various triggers for NO production. Using TPLSM on ex vivo mounted murine carotid artery and aorta, the applicability of the probe to image NO production in both endothelial cells and smooth muscle cells was shown. NO-production and time course was detected for multiple stimuli such as flow, acetylcholine and hydrogen peroxide and its correlation with vasodilation was demonstrated. NO-specific fluorescence and vasodilation was abrogated in the presence of NO-synthesis blocker L-NAME. Finally, the influence of carotid precontraction and vasorelaxation validated the functional properties of vessels. Specific visualization of NO production in vessels with Cu 2FL2E-TPLSM provides a valid method for studying spatial-temporal synthesis of NO in vascular biology at an unprecedented level. This approach enables investigation of the pathways involved in the complex interplay between NO and vascular (dys) function.


Subject(s)
Coronary Vessels/cytology , Endothelial Cells/metabolism , Fluorescent Dyes/chemistry , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Nitric Oxide/chemistry , Animals , Humans , Image Processing, Computer-Assisted , Linear Models , Mice , Molecular Structure , NG-Nitroarginine Methyl Ester , Nitric Oxide/metabolism , Swine
11.
Small ; 7(22): 3170-7, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22012886

ABSTRACT

Real-time X-ray or magnetic resonance imaging are known methods used for biomedical diagnosis. By the oral administration of barium meal, X-ray imaging can be extended for use in soft tissue imaging. The oral ingestion of a fluorescent probe is a new approach to imaging a living species. Here, water-soluble carbon nano-onions are introduced as a nontoxic, fluorescent reagent enabling Drosophila melanogaster (fruit flies) to be imaged alive. It is demonstrated that these water-soluble carbon nano-onions, synthesized from wood waste, colorfully image all the development phases of Drosophila melanogaster from its egg to adulthood. Oral ingestion of up to 4 ppm of soluble carbon nano-onions allows the optical fluorescence microscopy imaging of all the stages of the fruit fly life cycle without showing any toxic effects. The fluorescent Drosophila melanogaster excretes this fluorescing material upon the withdrawal of carbon nano-onions from its food.


Subject(s)
Carbon/chemistry , Drosophila melanogaster/growth & development , Imaging, Three-Dimensional/methods , Life Cycle Stages , Nanostructures/chemistry , Animals , Feces , Larva/metabolism , Nanostructures/toxicity , Nanostructures/ultrastructure , Solubility , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...