Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
N Engl J Med ; 390(20): 1873-1884, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38810185

ABSTRACT

BACKGROUND: Autoimmune polyendocrine syndrome type 1 (APS-1) is a life-threatening, autosomal recessive syndrome caused by autoimmune regulator (AIRE) deficiency. In APS-1, self-reactive T cells escape thymic negative selection, infiltrate organs, and drive autoimmune injury. The effector mechanisms governing T-cell-mediated damage in APS-1 remain poorly understood. METHODS: We examined whether APS-1 could be classified as a disease mediated by interferon-γ. We first assessed patients with APS-1 who were participating in a prospective natural history study and evaluated mRNA and protein expression in blood and tissues. We then examined the pathogenic role of interferon-γ using Aire-/-Ifng-/- mice and Aire-/- mice treated with the Janus kinase (JAK) inhibitor ruxolitinib. On the basis of our findings, we used ruxolitinib to treat five patients with APS-1 and assessed clinical, immunologic, histologic, transcriptional, and autoantibody responses. RESULTS: Patients with APS-1 had enhanced interferon-γ responses in blood and in all examined autoimmunity-affected tissues. Aire-/- mice had selectively increased interferon-γ production by T cells and enhanced interferon-γ, phosphorylated signal transducer and activator of transcription 1 (pSTAT1), and CXCL9 signals in multiple organs. Ifng ablation or ruxolitinib-induced JAK-STAT blockade in Aire-/- mice normalized interferon-γ responses and averted T-cell infiltration and damage in organs. Ruxolitinib treatment of five patients with APS-1 led to decreased levels of T-cell-derived interferon-γ, normalized interferon-γ and CXCL9 levels, and remission of alopecia, oral candidiasis, nail dystrophy, gastritis, enteritis, arthritis, Sjögren's-like syndrome, urticaria, and thyroiditis. No serious adverse effects from ruxolitinib were identified in these patients. CONCLUSIONS: Our findings indicate that APS-1, which is caused by AIRE deficiency, is characterized by excessive, multiorgan interferon-γ-mediated responses. JAK inhibition with ruxolitinib in five patients showed promising results. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Subject(s)
AIRE Protein , Interferon-gamma , Nitriles , Polyendocrinopathies, Autoimmune , Pyrazoles , Pyrimidines , Transcription Factors , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/drug therapy , Polyendocrinopathies, Autoimmune/immunology , Interferon-gamma/metabolism , Interferon-gamma/genetics , Humans , Animals , Nitriles/therapeutic use , Mice , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Pyrimidines/therapeutic use , Transcription Factors/genetics , Female , Male , Mice, Knockout , Adult , Chemokine CXCL9/genetics , Autoantibodies/blood , T-Lymphocytes/immunology , Janus Kinase Inhibitors/therapeutic use
2.
JAMA Dermatol ; 160(2): 172-178, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38170500

ABSTRACT

Importance: Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer. Of the patients who develop MCC annually, only 4% are younger than 50 years. Objective: To identify genetic risk factors for early-onset MCC via genomic sequencing. Design, Setting, and Participants: The study represents a multicenter collaboration between the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Institute of Allergy and Infectious Diseases (NIAID), and the University of Washington. Participants with early-onset and later-onset MCC were prospectively enrolled in an institutional review board-approved study at the University of Washington between January 2003 and May 2019. Unrelated controls were enrolled in the NIAID Centralized Sequencing Program (CSP) between September 2017 and September 2021. Analysis was performed from September 2021 and March 2023. Early-onset MCC was defined as disease occurrence in individuals younger than 50 years. Later-onset MCC was defined as disease occurrence at age 50 years or older. Unrelated controls were evaluated by the NIAID CSP for reasons other than familial cancer syndromes, including immunological, neurological, and psychiatric disorders. Results: This case-control analysis included 1012 participants: 37 with early-onset MCC, 45 with later-onset MCC, and 930 unrelated controls. Among 37 patients with early-onset MCC, 7 (19%) had well-described variants in genes associated with cancer predisposition. Six patients had variants associated with hereditary cancer syndromes (ATM = 2, BRCA1 = 2, BRCA2 = 1, and TP53 = 1) and 1 patient had a variant associated with immunodeficiency and lymphoma (MAGT1). Compared with 930 unrelated controls, the early-onset MCC cohort was significantly enriched for cancer-predisposing pathogenic or likely pathogenic variants in these 5 genes (odds ratio, 30.35; 95% CI, 8.89-106.30; P < .001). No germline disease variants in these genes were identified in 45 patients with later-onset MCC. Additional variants in DNA repair genes were also identified among patients with MCC. Conclusions and Relevance: Because variants in certain DNA repair and cancer predisposition genes are associated with early-onset MCC, genetic counseling and testing should be considered for patients presenting at younger than 50 years.


Subject(s)
Carcinoma, Merkel Cell , Skin Neoplasms , Humans , Middle Aged , Genetic Predisposition to Disease , Carcinoma, Merkel Cell/epidemiology , Carcinoma, Merkel Cell/genetics , Germ-Line Mutation , Skin Neoplasms/epidemiology , Skin Neoplasms/genetics , Risk Factors
3.
Elife ; 122023 Oct 24.
Article in English | MEDLINE | ID: mdl-37874617

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) variants associated with Parkinson's disease (PD) and Crohn's disease lead to increased phosphorylation of its Rab substrates. While it has been recently shown that perturbations in cellular homeostasis including lysosomal damage can increase LRRK2 activity and localization to lysosomes, the molecular mechanisms by which LRRK2 activity is regulated have remained poorly defined. We performed a targeted siRNA screen to identify regulators of LRRK2 activity and identified Rab12 as a novel modulator of LRRK2-dependent phosphorylation of one of its substrates, Rab10. Using a combination of imaging and immunopurification methods to isolate lysosomes, we demonstrated that Rab12 is actively recruited to damaged lysosomes and leads to a local and LRRK2-dependent increase in Rab10 phosphorylation. PD-linked variants, including LRRK2 R1441G and VPS35 D620N, lead to increased recruitment of LRRK2 to the lysosome and a local elevation in lysosomal levels of pT73 Rab10. Together, these data suggest a conserved mechanism by which Rab12, in response to damage or expression of PD-associated variants, facilitates the recruitment of LRRK2 and phosphorylation of its Rab substrate(s) at the lysosome.


Lysosomes are cellular compartments tasked with breaking down large molecules such as lipids or proteins. They perform an essential role in helping cells dispose of obsolete or harmful components; in fact, defects in lysosome function are associated with a range of health conditions. For instance, many genes associated with an increased risk of developing Parkinson's disease code for proteins required for lysosomes to work properly, such as the kinase LRRK2. Previous work has shown that this enzyme gets recruited to the surface of damaged lysosomes, where it can modulate the function of another set of molecular actors by modifying them through a chemical process known as phosphorylation. Such activity is increased in harmful versions of LRRK2 linked to Parkinson's disease. However, the molecular mechanisms which control LRRK2 activity or its recruitment to lysosomes remain unclear. To examine this question, Wang, Bondar et al. first performed a targeted screen to identify proteins that can regulate LRRK2 activity. This revealed that Rab12, one of molecular actors that LRRK2 phosphorylates, can in turn modulate the activity of the enzyme. Further imaging and biochemical experiments then showed that Rab12 is recruited to damaged lysosomes and that this step was in fact necessary for LRRK2 to also relocate to these compartments. The data suggest that this Rab12-driven recruitment process increases the local concentration of LRRK2 near its Rab targets on the membrane of damaged lysosomes, and therefore leads to enhanced LRRK2 activity. Crucially, Wang, Bondar et al. showed that Rab12 also plays a role in the increased LRRK2 activity observed with two Parkinson's disease-linked mutations (one in LRRK2 itself and one in another lysosomal regulator, VPS35), suggesting that increased LRRK2 concentration on lysosomes may be a conserved mechanism that leads to increased LRRK2 activity in disease. Overall, these results highlight a new, Rab12-dependent mechanism that results in enhanced activity at the lysosomal membrane with variants associated with Parkinson's disease, and for LRRK2 in general when lysosomes are damaged. This knowledge will be helpful to develop therapeutic strategies that target LRRK2, and to better understand how increased LRRK2 activity and lysosomal injury may be linked to Parkinson's disease.


Subject(s)
Biological Phenomena , Lysosomes , rab GTP-Binding Proteins , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Lysosomes/metabolism , Mutation , Phosphorylation , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Humans
5.
Ann Pediatr Cardiol ; 16(1): 71-73, 2023.
Article in English | MEDLINE | ID: mdl-37287832

ABSTRACT

Primary chylopericardium (PC) is a rare entity in the pediatric population with very few reported cases. Most cases of chylopericardium manifest after trauma or following cardiac surgery. The other etiologies which may lead to chylopericardium are malignancy, tuberculosis, or congenital lymphangiomatosis. We report two cases of PC in the pediatric population with contrasting outcomes. Both failed conservative management with dietary modification and octreotide. Surgery with pleuropericardial and pleuroperitoneal windows was performed in both. The first case had a thoracic duct ligation. The first patient died, and the second survived.

6.
Front Immunol ; 14: 1172004, 2023.
Article in English | MEDLINE | ID: mdl-37215141

ABSTRACT

Purpose: Though copy number variants (CNVs) have been suggested to play a significant role in inborn errors of immunity (IEI), the precise nature of this role remains largely unexplored. We sought to determine the diagnostic contribution of CNVs using genome-wide chromosomal microarray analysis (CMA) in children with IEI. Methods: We performed exome sequencing (ES) and CMA for 332 unrelated pediatric probands referred for evaluation of IEI. The analysis included primary, secondary, and incidental findings. Results: Of the 332 probands, 134 (40.4%) received molecular diagnoses. Of these, 116/134 (86.6%) were diagnosed by ES alone. An additional 15/134 (11.2%) were diagnosed by CMA alone, including two likely de novo changes. Three (2.2%) participants had diagnostic molecular findings from both ES and CMA, including two compound heterozygotes and one participant with two distinct diagnoses. Half of the participants with CMA contribution to diagnosis had CNVs in at least one non-immune gene, highlighting the clinical complexity of these cases. Overall, CMA contributed to 18/134 diagnoses (13.4%), increasing the overall diagnostic yield by 15.5% beyond ES alone. Conclusion: Pairing ES and CMA can provide a comprehensive evaluation to clarify the complex factors that contribute to both immune and non-immune phenotypes. Such a combined approach to genetic testing helps untangle complex phenotypes, not only by clarifying the differential diagnosis, but in some cases by identifying multiple diagnoses contributing to the overall clinical presentation.


Subject(s)
Chromosomes , Genetic Testing , Humans , Child , Exome Sequencing , Microarray Analysis , Phenotype
7.
Craniomaxillofac Trauma Reconstr ; 16(1): 10-14, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36824190

ABSTRACT

Study Design: Retrospective Study. Objective: To find out the incidence, type, and severity of injuries in other parts of the body in patients diagnosed with facial fractures. The study also analyzed any correlation between these injuries and facial fractures. Methods: A retrospective study of 991 patients with facial fractures during the period of 2006-2016. Results: 111 patients reported associated injuries (11.1%). The most common type of injury was limb injury (33.33%), followed by head injury (22.5%), clavicle fracture (14.7%), rib fracture (10.9%), cervical spine injury (5.4%), and other injuries constituted (13.2%). Multiple associated injuries were observed in 14% of patients. Conclusion: The findings show that facial fracture management is a multidisciplinary approach. Prompt diagnosis and proper management are important to reduce the mortality rate and improve the prognosis of the patient.

8.
J Allergy Clin Immunol ; 150(6): 1556-1562, 2022 12.
Article in English | MEDLINE | ID: mdl-35987349

ABSTRACT

BACKGROUND: Newborn screening can identify neonatal T-cell lymphopenia through detection of a low number of copies of T-cell receptor excision circles in dried blood spots collected at birth. After a positive screening result, further diagnostic testing is required to determine whether the subject has severe combined immunodeficiency or other causes of T-cell lymphopenia. Even after thorough evaluation, approximately 15% of children with a positive result of newborn screening for T-cell receptor excision circles remain genetically undiagnosed. Identifying the underlying genetic etiology is necessary to guide subsequent clinical management and family planning. OBJECTIVE: We sought to elucidate the genetic basis of patients with T-cell lymphopenia without an apparent genetic diagnosis. METHODS: We used clinical genomic testing as well as functional and immunologic assays to identify and elucidate the genetic and mechanistic basis of T-cell lymphopenia. RESULTS: We report 2 unrelated individuals with nonsevere T-cell lymphopenia and abnormal T-cell receptor excision circles who harbor heterozygous loss-of-function variants in forkhead box I3 transcription factor (FOXI3). CONCLUSION: Our findings support the notion that haploinsufficiency of FOXI3 results in T-cell lymphopenia with variable expressivity and that FOXI3 may be a key modulator of thymus development.


Subject(s)
Genomics , Receptors, Antigen, T-Cell , Infant, Newborn , Child , Humans , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
9.
Sci Transl Med ; 14(648): eabj2658, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35675433

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic risk factors for Parkinson's disease (PD). Increased LRRK2 kinase activity is thought to impair lysosomal function and may contribute to the pathogenesis of PD. Thus, inhibition of LRRK2 is a potential disease-modifying therapeutic strategy for PD. DNL201 is an investigational, first-in-class, CNS-penetrant, selective, ATP-competitive, small-molecule LRRK2 kinase inhibitor. In preclinical models, DNL201 inhibited LRRK2 kinase activity as evidenced by reduced phosphorylation of both LRRK2 at serine-935 (pS935) and Rab10 at threonine-73 (pT73), a direct substrate of LRRK2. Inhibition of LRRK2 by DNL201 demonstrated improved lysosomal function in cellular models of disease, including primary mouse astrocytes and fibroblasts from patients with Gaucher disease. Chronic administration of DNL201 to cynomolgus macaques at pharmacologically relevant doses was not associated with adverse findings. In phase 1 and phase 1b clinical trials in 122 healthy volunteers and in 28 patients with PD, respectively, DNL201 at single and multiple doses inhibited LRRK2 and was well tolerated at doses demonstrating LRRK2 pathway engagement and alteration of downstream lysosomal biomarkers. Robust cerebrospinal fluid penetration of DNL201 was observed in both healthy volunteers and patients with PD. These data support the hypothesis that LRRK2 inhibition has the potential to correct lysosomal dysfunction in patients with PD at doses that are generally safe and well tolerated, warranting further clinical development of LRRK2 inhibitors as a therapeutic modality for PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Animals , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Lysosomes/metabolism , Mice , Mutation , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Phosphorylation
10.
J Allergy Clin Immunol ; 150(4): 947-954, 2022 10.
Article in English | MEDLINE | ID: mdl-35753512

ABSTRACT

BACKGROUND: Prospective genetic evaluation of patients at this referral research hospital presents clinical research challenges. OBJECTIVES: This study sought not only a single-gene explanation for participants' immune-related presentations, but viewed each participant holistically, with the potential to have multiple genetic contributions to their immune phenotype and other heritable comorbidities relevant to their presentation and health. METHODS: This study developed a program integrating exome sequencing, chromosomal microarray, phenotyping, results return with genetic counseling, and reanalysis in 1505 individuals from 1000 families with suspected or known inborn errors of immunity. RESULTS: Probands were 50.8% female, 71.5% were ≥18 years, and had diverse immune presentations. Overall, 327 of 1000 probands (32.7%) received 361 molecular diagnoses. These included 17 probands with diagnostic copy number variants, 32 probands with secondary findings, and 31 probands with multiple molecular diagnoses. Reanalysis added 22 molecular diagnoses, predominantly due to new disease-gene associations (9 of 22, 40.9%). One-quarter of the molecular diagnoses (92 of 361) did not involve immune-associated genes. Molecular diagnosis was correlated with younger age, male sex, and a higher number of organ systems involved. This program also facilitated the discovery of new gene-disease associations such as SASH3-related immunodeficiency. A review of treatment options and ClinGen actionability curations suggest that at least 251 of 361 of these molecular diagnoses (69.5%) could translate into ≥1 management option. CONCLUSIONS: This program contributes to our understanding of the diagnostic and clinical utility whole exome analysis on a large scale.


Subject(s)
Exome , Genetic Testing , Exome/genetics , Female , Genetic Testing/methods , Genomics , Humans , Male , Phenotype , Prospective Studies
11.
Blood Adv ; 6(13): 3974-3978, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35476126

ABSTRACT

Autoimmune lymphoproliferative syndrome (ALPS) is characterized by chronic nonmalignant lymphadenopathy, splenomegaly, cytopenias, and other autoimmune manifestations. ALPS is caused by lymphocyte accumulation from defects in FAS-mediated apoptosis. Heterozygous germline or somatic pathogenic single nucleotide variants in FAS are the most common molecular etiology of ALPS. Through the Centralized Sequencing Program at the National Institute of Allergy and Infectious Diseases, we performed exome sequencing on subjects with a clinical diagnosis of ALPS, with a subset receiving copy number variant (CNV) analysis. In this cohort, we identified 3 subjects from unrelated families with CNVs at the FAS locus. One subject had a de novo ∼0.828 Mb copy number loss encompassing all of FAS. The second subject had a maternally inherited ∼1.004 Mb copy number loss encompassing all of FAS. The third subject had a paternally inherited ∼0.044 Mb copy number loss encompassing exons 7 through 9 of FAS. Subjects with deletions in FAS had clinical presentations and biomarker profiles similar to those with ALPS and with germline and somatic FAS variants. We demonstrate that CNV analysis should be pursued if there is clinical and biomarker evidence of ALPS because it can lead to a molecular diagnosis and appropriate treatment when FAS sequencing is inconclusive.


Subject(s)
Autoimmune Lymphoproliferative Syndrome , Autoimmune Lymphoproliferative Syndrome/diagnosis , Autoimmune Lymphoproliferative Syndrome/genetics , DNA Copy Number Variations , Heterozygote , Humans , Splenomegaly/pathology , fas Receptor/genetics
12.
J Biomed Inform ; 129: 104059, 2022 05.
Article in English | MEDLINE | ID: mdl-35351638

ABSTRACT

The study aims at developing a neural network model to improve the performance of Human Phenotype Ontology (HPO) concept recognition tools. We used the terms, definitions, and comments about the phenotypic concepts in the HPO database to train our model. The document to be analyzed is first split into sentences and annotated with a base method to generate candidate concepts. The sentences, along with the candidate concepts, are then fed into the pre-trained model for re-ranking. Our model comprises the pre-trained BlueBERT and a feature selection module, followed by a contrastive loss. We re-ranked the results generated by three robust HPO annotation tools and compared the performance against most of the existing approaches. The experimental results show that our model can improve the performance of the existing methods. Significantly, it boosted 3.0% and 5.6% in F1 score on the two evaluated datasets compared with the base methods. It removed more than 80% of the false positives predicted by the base methods, resulting in up to 18% improvement in precision. Our model utilizes the descriptive data in the ontology and the contextual information in the sentences for re-ranking. The results indicate that the additional information and the re-ranking model can significantly enhance the precision of HPO concept recognition compared with the base method.


Subject(s)
Language , Neural Networks, Computer , Databases, Factual , Humans , Phenotype
13.
Mol Biol Cell ; 33(6): ar47, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35352962

ABSTRACT

Chromatin organization and dynamics are critical for gene regulation. In this work we present a methodology for fast and parallel three-dimensional (3D) tracking of multiple chromosomal loci of choice over many thousands of frames on various timescales. We achieved this by developing and combining fluorogenic and replenishable nanobody arrays, engineered point spread functions, and light sheet illumination. The result is gentle live-cell 3D tracking with excellent spatiotemporal resolution throughout the mammalian cell nucleus. Correction for both sample drift and nuclear translation facilitated accurate long-term tracking of the chromatin dynamics. We demonstrate tracking both of fast dynamics (50 Hz) and over timescales extending to several hours, and we find both large heterogeneity between cells and apparent anisotropy in the dynamics in the axial direction. We further quantify the effect of inhibiting actin polymerization on the dynamics and find an overall increase in both the apparent diffusion coefficient D* and anomalous diffusion exponent α and a transition to more-isotropic dynamics in 3D after such treatment. We think that in the future our methodology will allow researchers to obtain a better fundamental understanding of chromatin dynamics and how it is altered during disease progression and after perturbations of cellular function.


Subject(s)
Chromatin , Chromosomes , Animals , Anisotropy , Diffusion , Gene Expression Regulation , Mammals
14.
Nucleic Acids Res ; 50(D1): D665-D677, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34791429

ABSTRACT

The Natural Products Magnetic Resonance Database (NP-MRD) is a comprehensive, freely available electronic resource for the deposition, distribution, searching and retrieval of nuclear magnetic resonance (NMR) data on natural products, metabolites and other biologically derived chemicals. NMR spectroscopy has long been viewed as the 'gold standard' for the structure determination of novel natural products and novel metabolites. NMR is also widely used in natural product dereplication and the characterization of biofluid mixtures (metabolomics). All of these NMR applications require large collections of high quality, well-annotated, referential NMR spectra of pure compounds. Unfortunately, referential NMR spectral collections for natural products are quite limited. It is because of the critical need for dedicated, open access natural product NMR resources that the NP-MRD was funded by the National Institute of Health (NIH). Since its launch in 2020, the NP-MRD has grown quickly to become the world's largest repository for NMR data on natural products and other biological substances. It currently contains both structural and NMR data for nearly 41,000 natural product compounds from >7400 different living species. All structural, spectroscopic and descriptive data in the NP-MRD is interactively viewable, searchable and fully downloadable in multiple formats. Extensive hyperlinks to other databases of relevance are also provided. The NP-MRD also supports community deposition of NMR assignments and NMR spectra (1D and 2D) of natural products and related meta-data. The deposition system performs extensive data enrichment, automated data format conversion and spectral/assignment evaluation. Details of these database features, how they are implemented and plans for future upgrades are also provided. The NP-MRD is available at https://np-mrd.org.


Subject(s)
Biological Products/chemistry , Databases, Factual , Magnetic Resonance Spectroscopy , Software , Biological Products/classification , Internet
15.
Front Mol Biosci ; 8: 720955, 2021.
Article in English | MEDLINE | ID: mdl-34540897

ABSTRACT

Metabolomics has emerged as a powerful discipline to study complex biological systems from a small molecule perspective. The success of metabolomics hinges upon reliable annotations of spectral features obtained from MS and/or NMR. In spite of tremendous progress with regards to analytical instrumentation and computational tools, < 20% of spectral features are confidently identified in most untargeted metabolomics experiments. This article explores the integration of multiple analytical instruments such as UHPLC-MS/MS-SPE-NMR and the cryo-EM method MicroED to achieve large-scale and confident metabolite identifications in a higher-throughput manner. UHPLC-MS/MS-SPE allows for the simultaneous automated purification of metabolites followed by offline structure elucidation and structure validation by NMR and MicroED. Large-scale study of complex metabolomes such as that of the model plant legume Medicago truncatula can be achieved using an integrated UHPLC-MS/MS-SPE-NMR metabolomics platform. Additionally, recent developments in MicroED to study structures of small organic molecules have enabled faster, easier and precise structure determinations of metabolites. A MicroED small molecule structure elucidation workflow (e.g., crystal screening, sample preparation, data collection and data processing/structure determination) has been described. Ongoing MicroED methods development and its future scope related to structure elucidation of specialized metabolites and metabolomics are highlighted. The incorporation of MicroED with a UHPLC-MS/MS-SPE-NMR instrumental ensemble offers the potential to accelerate and achieve higher rates of metabolite identification.

16.
Nat Chem Biol ; 17(11): 1148-1156, 2021 11.
Article in English | MEDLINE | ID: mdl-34556859

ABSTRACT

The unfolded protein response (UPR) homeostatically matches endoplasmic reticulum (ER) protein-folding capacity to cellular secretory needs. However, under high or chronic ER stress, the UPR triggers apoptosis. This cell fate dichotomy is promoted by differential activation of the ER transmembrane kinase/endoribonuclease (RNase) IRE1α. We previously found that the RNase of IRE1α can be either fully activated or inactivated by ATP-competitive kinase inhibitors. Here we developed kinase inhibitors, partial antagonists of IRE1α RNase (PAIRs), that partially antagonize the IRE1α RNase at full occupancy. Biochemical and structural studies show that PAIRs promote partial RNase antagonism by intermediately displacing the helix αC in the IRE1α kinase domain. In insulin-producing ß-cells, PAIRs permit adaptive splicing of Xbp1 mRNA while quelling destructive ER mRNA endonucleolytic decay and apoptosis. By preserving Xbp1 mRNA splicing, PAIRs allow B cells to differentiate into immunoglobulin-producing plasma cells. Thus, an intermediate RNase-inhibitory 'sweet spot', achieved by PAIR-bound IRE1α, captures a desirable conformation for drugging this master UPR sensor/effector.


Subject(s)
Adenosine Triphosphate/pharmacology , Endoribonucleases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Adenosine Triphosphate/chemistry , Endoribonucleases/metabolism , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Unfolding/drug effects
17.
Environ Monit Assess ; 193(10): 652, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34528153

ABSTRACT

The increasing use of gibberellic acid (GA3) to promote fruit growth and yield has necessitated research into its trace level determination and estimation in harvested product. The phytohormone has increased the tomato yield (tonne ha-1) up to 24.7% with uniform fruit shape, size colour and lustre. A fast, simple, high-throughput analytical method was standardised based on electrospray ionisation - liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted using acidified (1% formic acid) methanol. The method was validated as per the SANTE/12682/2019 guidelines. The limits of detection (LOD) and quantification (LOQ) were 0.01 and 0.05 mg kg-1. The average recoveries at LOQ and higher levels were in the range of 86-108% with relative standard deviation (RSD) < 20%. The validated method was successfully applied under field condition by following first-order kinetics with half-lives (T1/2) 1.76 days (recommended dose) and 1.99 days (double dose). The estimated pre-harvest intervals (PHIs) were 6 days (recommended dose) and 8 days (double dose). Studies on dietary risk assessment concluded that even after spray of GA3 at recommended dose, the harvested produce (tomato) could be consumed safely.


Subject(s)
Solanum lycopersicum , Tandem Mass Spectrometry , Chromatography, Liquid , Environmental Monitoring , Gibberellins , Risk Assessment
18.
Annu Rev Cell Dev Biol ; 37: 199-232, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34228506

ABSTRACT

Nuclei are central hubs for information processing in eukaryotic cells. The need to fit large genomes into small nuclei imposes severe restrictions on genome organization and the mechanisms that drive genome-wide regulatory processes. How a disordered polymer such as chromatin, which has vast heterogeneity in its DNA and histone modification profiles, folds into discernibly consistent patterns is a fundamental question in biology. Outstanding questions include how genomes are spatially and temporally organized to regulate cellular processes with high precision and whether genome organization is causally linked to transcription regulation. The advent of next-generation sequencing, super-resolution imaging, multiplexed fluorescent in situ hybridization, and single-molecule imaging in individual living cells has caused a resurgence in efforts to understand the spatiotemporal organization of the genome. In this review, we discuss structural and mechanistic properties of genome organization at different length scales and examine changes in higher-order chromatin organization during important developmental transitions.


Subject(s)
Chromatin , Chromosomes , Chromatin/genetics , DNA , Genome , In Situ Hybridization, Fluorescence
19.
Genome Res ; 31(7): 1187-1202, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34168009

ABSTRACT

DNA topology and alternative DNA structures are implicated in regulating diverse biological processes. Although biomechanical properties of these structures have been studied extensively in vitro, characterization in vivo, particularly in multicellular organisms, is limited. We devised new methods to map DNA supercoiling and single-stranded DNA in Caenorhabditis elegans embryos and diapause larvae. To map supercoiling, we quantified the incorporation of biotinylated psoralen into DNA using high-throughput sequencing. To map single-stranded DNA, we combined permanganate treatment with genome-wide sequencing of induced double-stranded breaks. We found high levels of negative supercoiling at transcription start sites (TSSs) in embryos. GC-rich regions flanked by a sharp GC-to-AT transition delineate boundaries of supercoil propagation. In contrast to TSSs in embryos, TSSs in diapause larvae showed dramatic reductions in negative supercoiling without concomitant attenuation of transcription, suggesting developmental-stage-specific regulation. To assess whether alternative DNA structures control chromosome architecture and gene expression, we examined DNA supercoiling in the context of X-Chromosome dosage compensation. We showed that the condensin dosage compensation complex creates negative supercoils locally at its highest-occupancy binding sites but found no evidence for large-scale supercoiling domains along X Chromosomes. In contrast to transcription-coupled negative supercoiling, single-strandedness, which is most pronounced at transcript end sites, is dependent on high AT content and symmetrically positioned nucleosomes. We propose that sharp transitions in sequence composition at functional genomic elements constitute a common regulatory code and that DNA structure and propagation of torsional stress at regulatory elements are critical parameters in shaping important developmental events.

20.
J Maxillofac Oral Surg ; 20(2): 271-275, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33927497

ABSTRACT

AIMS AND OBJECTIVE: This retrospective study evaluates the importance of Mantoux test and Erythrocyte Sedimentation Rate (ESR) levels in pediatric tuberculosis and also signifies the impact of this test in treatment planning and implementation in pediatric cleft lip and palate patients. METHODOLOGY: Retrospective analyses of the records of 2010 pediatric cleft lip and palate patients below 5 years age were performed, and patients with elevated ESR subjected to Mantoux test were identified. The parameters included were age, sex, ESR levels, type of cleft, history of contact with TB & BCG vaccination, Mantoux conversion, chest X-ray findings, number of smear-positive pulmonary tuberculosis. RESULTS: Out of 2010 patients with cleft lip and palate, 180 patients were subjected to Mantoux test due to high ESR levels. Among these, 54 (30%) patients found as Mantoux positive, in which 45 patients were identified as smear-positive pulmonary tuberculosis patients; as a result, surgery was deferred and they underwent antituberculous therapy. Most of the Mantoux-positive cases were found in patients with ESR range of 20-30 mm, i.e., 38 patients (71%), and common age group was 6 months-1 year. The most commonly involved cleft type was: unilateral cleft lip and palate having 36 patients (66.7%). The overall incidence of tuberculosis was 2%. CONCLUSION: Although the correlation of Mantoux test with elevated ESR was not significant in our study, it could be of value as a screening tool along with the Mantoux test, which is sensitive but nonspecific in the diagnosis of active tuberculosis. Together, they could be a valuable screening tool in any community or hospital for diagnosis of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...