Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Cardiovasc Res ; 120(5): 531-547, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38332738

ABSTRACT

AIMS: Heart failure due to ischaemic heart disease (IHD) is a leading cause of mortality worldwide. A major contributing factor to IHD-induced cardiac damage is hypoxia. Sequestosome 1 (p62) is a multi-functional adaptor protein with pleiotropic roles in autophagy, proteostasis, inflammation, and cancer. Despite abundant expression in cardiomyocytes, the role of p62 in cardiac physiology is not well understood. We hypothesized that cardiomyocyte-specific p62 deletion evokes hypoxia-induced cardiac pathology by impairing hypoxia-inducible factor 1α (Hif-1α) and nuclear factor erythroid 2-related factor 2 (Nrf2) signalling. METHODS AND RESULTS: Adult mice with germline deletion of cardiomyocyte p62 exhibited mild cardiac dysfunction under normoxic conditions. Transcriptomic analyses revealed a selective impairment in Nrf2 target genes in the hearts from these mice. Demonstrating the functional importance of this adaptor protein, adult mice with inducible depletion of cardiomyocyte p62 displayed hypoxia-induced contractile dysfunction, oxidative stress, and cell death. Mechanistically, p62-depleted hearts exhibit impaired Hif-1α and Nrf2 transcriptional activity. Because findings from these two murine models suggested a cardioprotective role for p62, mechanisms were evaluated using H9c2 cardiomyoblasts. Loss of p62 in H9c2 cells exposed to hypoxia reduced Hif-1α and Nrf2 protein levels. Further, the lack of p62 decreased Nrf2 protein expression, nuclear translocation, and transcriptional activity. Repressed Nrf2 activity associated with heightened Nrf2-Keap1 co-localization in p62-deficient cells, which was concurrent with increased Nrf2 ubiquitination facilitated by the E3 ligase Cullin 3, followed by proteasomal-mediated degradation. Substantiating our results, a gain of p62 in H9c2 cells stabilized Nrf2 and increased the transcriptional activity of Nrf2 downstream targets. CONCLUSION: Cardiac p62 mitigates hypoxia-induced cardiac dysfunction by stabilizing Hif-1α and Nrf2.


Subject(s)
Cell Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Myocytes, Cardiac , NF-E2-Related Factor 2 , Sequestosome-1 Protein , Animals , Cell Hypoxia/genetics , Cell Line , Disease Models, Animal , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-E2-Related Factor 2/deficiency , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Protein Stability , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Signal Transduction , Ubiquitination , Mice
2.
Circ Heart Fail ; 16(12): e010351, 2023 12.
Article in English | MEDLINE | ID: mdl-38113297

ABSTRACT

BACKGROUND: PRDM16 plays a role in myocardial development through TGF-ß (transforming growth factor-beta) signaling. Recent evidence suggests that loss of PRDM16 expression is associated with cardiomyopathy development in mice, although its role in human cardiomyopathy development is unclear. This study aims to determine the impact of PRDM16 loss-of-function variants on cardiomyopathy in humans. METHODS: Individuals with PRDM16 variants were identified and consented. Induced pluripotent stem cell-derived cardiomyocytes were generated from a proband hosting a Q187X nonsense variant as an in vitro model and underwent proliferative and transcriptional analyses. CRISPR (clustered regularly interspaced short palindromic repeats)-mediated knock-in mouse model hosting the Prdm16Q187X allele was generated and subjected to ECG, histological, and transcriptional analysis. RESULTS: We report 2 probands with loss-of-function PRDM16 variants and pediatric left ventricular noncompaction cardiomyopathy. One proband hosts a PRDM16-Q187X variant with left ventricular noncompaction cardiomyopathy and demonstrated infant-onset heart failure, which was selected for further study. Induced pluripotent stem cell-derived cardiomyocytes prepared from the PRDM16-Q187X proband demonstrated a statistically significant impairment in myocyte proliferation and increased apoptosis associated with transcriptional dysregulation of genes implicated in cardiac maturation, including TGF-ß-associated transcripts. Homozygous Prdm16Q187X/Q187X mice demonstrated an underdeveloped compact myocardium and were embryonically lethal. Heterozygous Prdm16Q187X/WT mice demonstrated significantly smaller ventricular dimensions, heightened fibrosis, and age-dependent loss of TGF-ß expression. Mechanistic studies were undertaken in H9c2 cardiomyoblasts to show that PRDM16 binds TGFB3 promoter and represses its transcription. CONCLUSIONS: Novel loss-of-function PRDM16 variant impairs myocardial development resulting in noncompaction cardiomyopathy in humans and mice associated with altered TGF-ß signaling.


Subject(s)
Cardiomyopathies , DNA-Binding Proteins , Heart Failure , Signal Transduction , Transforming Growth Factor beta , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Heart Failure/genetics , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Myocardium/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/pathology , Humans , Male , Female , Animals , Mice , Gene Knock-In Techniques , Infant, Newborn , Child, Preschool , Cell Proliferation/genetics , Apoptosis/genetics , Transforming Growth Factor beta/metabolism , Signal Transduction/genetics , Cells, Cultured
3.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168260

ABSTRACT

Objective: Pathologies including cardiovascular diseases, cancer, and neurological disorders are caused by the accumulation of misfolded / damaged proteins. Intracellular protein degradation mechanisms play a critical role in the clearance of these disease-causing proteins. Chaperone mediated autophagy (CMA) is a protein degradation pathway that employs chaperones to bind proteins, bearing a unique KFERQ-like motif, for delivery to a CMA-specific Lysosome Associated Membrane Protein 2a (LAMP2a) receptor for lysosomal degradation. To date, steady-state CMA function has been assessed by measuring LAMP2A protein expression. However, this does not provide information regarding CMA degradation activity. To fill this dearth of tools / assays to measure CMA activity, we generated a CMA-specific fluorogenic substrate assay. Methods: A KFERQ-AMC [Lys-Phe-Asp-Arg-Gln-AMC(7-amino-4-methylcou-marin)] fluorogenic CMA substrate was synthesized from Solid-Phase Peptide Synthesis. KFERQ-AMC, when cleaved via lysosomal hydrolysis, causes AMC to release and fluoresce (Excitation:355 nm, Emission:460 nm). Using an inhibitor of lysosomal proteases, i.e., E64D [L-trans-Epoxy-succinyl-leucylamido(4-guanidino)butane)], responsible for cleaving CMA substrates, the actual CMA activity was determined. Essentially, CMA activity = (substrate) fluorescence - (substrate+E64D) fluorescence . To confirm specificity of the KFERQ sequence for CMA, negative control peptides were used. Results: Heart, liver, and kidney lysates containing intact lysosomes were obtained from 4-month-old adult male mice. First, lysates incubated with KFERQ-AMC displayed a time dependent (0-5 hour) increase in AMC fluorescence vs. lysates incubated with negative control peptides. These data validate the specificity of KFERQ for CMA. Of note, liver exhibited the highest CMA (6-fold; p<0.05) > kidney (2.4-fold) > heart (0.4-fold) at 5-hours. Second, E64D prevented KFERQ-AMC degradation, substantiating that KFERQ-AMC is degraded via lysosomes. Third, cleavage of KFERQ-AMC and resulting AMC fluorescence was inhibited in Human embryonic kidney (HEK) cells and H9c2 cardiac cells transfected with Lamp2a vs. control siRNA. Further, enhancing CMA using Lamp2a adenovirus upregulated KFERQ degradation. These data suggest that LAMP2A is required for KFERQ degradation. Conclusion. We have generated a novel assay for measuring CMA activity in cells and tissues in a variety of experimental contexts.

4.
Aging (Albany NY) ; 14(23): 9388-9392, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36470665

ABSTRACT

During the aging process damaged/dysfunctional proteins and organelles accumulate and contribute to organ dysfunction. Luckily, there is a conserved intracellular process to reuse and recycle these dysregulated cellular components termed macroautophagy (autophagy). Unfortunately, strong evidence indicates autophagy is compromised with aging, protein quality control is jeopardized, and resultant proteotoxicity can contribute significantly to age-associated organ dysfunction. Are there interventions that can re-establish autophagic flux that is otherwise impaired with aging? With particular regard to the heart, here we review evidence that caloric-restriction, the polyamine spermidine, and the mTOR inhibitor rapamycin, even when initiated late-in-life, restore cardiomyocyte autophagy to an extent that lessens age-associated cardiac dysfunction. Cho et al. provide a physiological intervention to this list i.e., regular physical exercise initiated late-in-life boosts cardiomyocyte autophagic flux and rejuvenates cardiac function in male mice. While this study provides strong evidence for a mechanism whereby heightened physical activity can lead to improved heart health in the context of aging, (i) only male mice were studied; (ii) the intensity of exercise-training might not be suitable for all; and (iii) mice with aging-associated comorbidities were not investigated. Nonetheless, Cho et al. provide robust evidence that a low-cost and simple behavioral intervention initiated late-in-life improves cardiomyocyte autophagic flux and rejuvenates cardiac function.


Subject(s)
Multiple Organ Failure , Myocytes, Cardiac , Male , Mice , Animals , Multiple Organ Failure/metabolism , Myocytes, Cardiac/metabolism , Aging/physiology , Autophagy , Spermidine/metabolism
5.
Am J Physiol Cell Physiol ; 323(5): C1555-C1575, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35584327

ABSTRACT

Chaperone-mediated autophagy (CMA) is a chaperone-dependent process of selective cytosolic protein turnover that targets specific proteins to lysosomes for degradation. Enhancing protein degradation mechanisms has been shown to be beneficial in multiple models of cardiac disease, including myocardial infarction (MI) and ischemia-reperfusion (I/R) injury. However, the causal role of CMA in cardiomyocyte injury and death is largely unknown. Hypoxia is an important contributor to both MI and I/R damage, which are major, precedent causes of heart failure. Upregulating CMA was hypothesized to protect against hypoxia-induced cardiomyocyte death. Lysosome-associated membrane protein 2a (Lamp2a) overexpression and knockdown were used to causally study CMA's role in hypoxically stressed cardiomyocytes. LAMP2a protein levels were used as both a primary indicator and driver of CMA function. Hypoxic stress was stimulated by CoCl2 treatment, which increased LAMP2a protein levels (+1.4-fold) and induced cardiomyocyte apoptosis (+3.2-4.0-fold). Lamp2a siRNA knockdown (-3.2-fold) of control cardiomyocytes increased apoptosis (+1.8-fold) suggesting that loss of CMA is detrimental for cardiomyocyte survival. However, there was neither an additive nor a synergistic effect on cell death when Lamp2a-silenced cells were treated with CoCl2. Conversely, Lamp2a overexpression (+3.0-fold) successfully reduced hypoxia-induced apoptosis by ∼50%. LAMP2a was also significantly increased (+1.7-fold) in ischemic heart failure patient samples, similar to hypoxically stressed cardiomyocytes. The failing ischemic hearts may have had insufficient CMA activation. To our knowledge, this study for the first time establishes a protective role for CMA (via Lamp2a overexpression) against hypoxia-induced cardiomyocyte loss and reveals the intriguing possibility that CMA activation may offer a cardioprotective treatment for ischemic heart disease.


Subject(s)
Chaperone-Mediated Autophagy , Heart Failure , Humans , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Myocytes, Cardiac/metabolism , Autophagy/genetics , Lysosomes/metabolism , Hypoxia/metabolism , Apoptosis , Heart Failure/metabolism
6.
Aging Cell ; 20(10): e13467, 2021 10.
Article in English | MEDLINE | ID: mdl-34554626

ABSTRACT

Protein quality control mechanisms decline during the process of cardiac aging. This enables the accumulation of protein aggregates and damaged organelles that contribute to age-associated cardiac dysfunction. Macroautophagy is the process by which post-mitotic cells such as cardiomyocytes clear defective proteins and organelles. We hypothesized that late-in-life exercise training improves autophagy, protein aggregate clearance, and function that is otherwise dysregulated in hearts from old vs. adult mice. As expected, 24-month-old male C57BL/6J mice (old) exhibited repressed autophagosome formation and protein aggregate accumulation in the heart, systolic and diastolic dysfunction, and reduced exercise capacity vs. 8-month-old (adult) mice (all p < 0.05). To investigate the influence of late-in-life exercise training, additional cohorts of 21-month-old mice did (old-ETR) or did not (old-SED) complete a 3-month progressive resistance treadmill running program. Body composition, exercise capacity, and soleus muscle citrate synthase activity improved in old-ETR vs. old-SED mice at 24 months (all p < 0.05). Importantly, protein expression of autophagy markers indicate trafficking of the autophagosome to the lysosome increased, protein aggregate clearance improved, and overall function was enhanced (all p < 0.05) in hearts from old-ETR vs. old-SED mice. These data provide the first evidence that a physiological intervention initiated late-in-life improves autophagic flux, protein aggregate clearance, and contractile performance in mouse hearts.


Subject(s)
Autophagy/physiology , Heart/physiopathology , Physical Conditioning, Animal/methods , Protein Aggregates/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Aging , Animals , Humans , Male , Mice , Middle Aged , Young Adult
7.
Cells ; 9(4)2020 04 10.
Article in English | MEDLINE | ID: mdl-32290135

ABSTRACT

Cardiovascular disease (CVD) is the number one cause of death in the United States. Advancing age is a primary risk factor for developing CVD. Estimates indicate that 20% of the US population will be ≥65 years old by 2030. Direct expenditures for treating CVD in the older population combined with indirect costs, secondary to lost wages, are predicted to reach $1.1 trillion by 2035. Therefore, there is an eminent need to discover novel therapeutic targets and identify new interventions to delay, lessen the severity, or prevent cardiovascular complications associated with advanced age. Protein and organelle quality control pathways including autophagy/lysosomal and the ubiquitin-proteasome systems, are emerging contributors of age-associated myocardial dysfunction. In general, two findings have sparked this interest. First, strong evidence indicates that cardiac protein degradation pathways are altered in the heart with aging. Second, it is well accepted that damaged and misfolded protein aggregates and dysfunctional mitochondria accumulate in the heart with age. In this review, we will: (i) define the different protein and mitochondria quality control mechanisms in the heart; (ii) provide evidence that each quality control pathway becomes dysfunctional during cardiac aging; and (iii) discuss current advances in targeting these pathways to maintain cardiac function with age.


Subject(s)
Autophagy/physiology , Cardiovascular Diseases/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Proteins/metabolism , Mitophagy/physiology , Age Factors , Aged , Aged, 80 and over , Animals , Cardiovascular Diseases/pathology , Humans , Mice , Proteolysis , Quality Control
8.
Oxid Med Cell Longev ; 2018: 8602041, 2018.
Article in English | MEDLINE | ID: mdl-29576856

ABSTRACT

Cardiac diseases including hypertrophic and ischemic cardiomyopathies are increasingly being reported to accumulate misfolded proteins and damaged organelles. These findings have led to an increasing interest in protein degradation pathways, like autophagy, which are essential not only for normal protein turnover but also in the removal of misfolded and damaged proteins. Emerging evidence suggests a previously unprecedented role for autophagic processes in cardiac physiology and pathology. This review focuses on the major types of autophagic processes, the genes and protein complexes involved, and their regulation. It discusses the key similarities and differences between macroautophagy, chaperone-mediated autophagy, and selective mitophagy structures and functions. The genetic models available to study loss and gain of macroautophagy, mitophagy, and CMA are discussed. It defines the markers of autophagic processes, methods for measuring autophagic activities, and their interpretations. This review then summarizes the major studies of autophagy in the heart and their contribution to cardiac pathology. Some reports suggest macroautophagy imparts cardioprotection from heart failure pathology. Meanwhile, other studies find macroautophagy activation may be detrimental in cardiac pathology. An improved understanding of autophagic processes and their regulation may lead to a new genre of treatments for cardiac diseases.


Subject(s)
Heart Failure/metabolism , Heart Failure/pathology , Autophagy/physiology , Heart Failure/genetics , Humans , Mitophagy/physiology
9.
Int J Cardiol ; 223: 923-935, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27589040

ABSTRACT

BACKGROUND: One of the most common nonsteroidal anti-inflammatory drugs (NSAIDs) used worldwide, diclofenac (DIC), has been linked to increased risk of cardiovascular disease (CVD). The molecular mechanism(s) by which DIC causes CVD is unknown. METHODS: Proteasome activities were studied in hearts, livers, and kidneys from male Swiss Webster mice treated with either 100mg/kg DIC for 18h (acute treatment) or 10mg/kg DIC for 28days (chronic treatment). Cultured H9c2 cells and neonatal cardiomyocytes were also treated with different concentrations of DIC and proteasome function, cell death and ROS generation studied. Isolated mouse heart mitochondria were utilized to determine the effect of DIC on various electron transport chain complex activities. RESULTS: DIC significantly inhibited the chymotrypsin-like proteasome activity in rat cardiac H9c2 cells, murine neonatal cardiomyocytes, and mouse hearts, but did not affect proteasome subunit expression levels. Proteasome activity was also affected in liver and kidney tissues from DIC treated animals. The levels of polyubiquitinated proteins increased in hearts from DIC treated mice. Importantly, the levels of oxidized proteins increased while the ß5i immunoproteasome activity decreased in hearts from DIC treated mice. DIC increased ROS production and cell death in H9c2 cells and neonatal cardiomyocytes while the cardioprotective NSAID, aspirin, had no effect on ROS levels or cell viability. DIC inhibited mitochondrial Complex III, a major source of ROS, and impaired mitochondrial membrane potential suggesting that mitochondria are the major sites of ROS generation. CONCLUSION: These results suggest that DIC induces cardiotoxicity by a ROS dependent mechanism involving mitochondrial and proteasome dysfunction.


Subject(s)
Cardiotoxicity , Diclofenac/pharmacology , Mitochondria, Heart , Myocytes, Cardiac , Proteasome Endopeptidase Complex , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Apoptosis/drug effects , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Cells, Cultured , Mice , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Reactive Oxygen Species/metabolism
10.
J Mol Cell Cardiol ; 94: 131-144, 2016 05.
Article in English | MEDLINE | ID: mdl-27049794

ABSTRACT

The use of nonsteroidal anti-inflammatory drugs (NSAIDs) like meclofenamate sodium (MS), used to reduce pain, has been associated with an increased risk of cardiovascular disease (CVD). Naproxen (NAP), another NSAID, is not associated with increased risk of CVD. The molecular mechanism(s) by which NSAIDs induce CVD is unknown. We investigated the effects of MS and NAP on protein homeostasis and cardiotoxicity in rat cardiac H9c2 cells and murine neonatal cardiomyocytes. MS, but not NAP, significantly inhibited proteasome activity and reduced cardiac cell viability at pharmacological levels found in humans. Although proteasome subunit gene and protein expression were unaffected by NSAIDs, MS treated cell lysates showed higher 20S proteasome content, while purified proteasomes from MS treated cells had lower proteasome activity and higher levels of oxidized subunits than proteasomes from control cells. Addition of exogenous proteasome to MS treated cells improved cell viability. Both MS and NAP increased ROS production, but the rate of ROS production was greater in MS than in NAP treated cells. The ROS production is likely from mitochondria, as MS inhibited mitochondrial Complexes I and III, major sources of ROS, while NAP inhibited Complex I. MS also impaired mitochondrial membrane potential while NAP did not. Antioxidants were able to prevent the reduced cell viability caused by MS treatment. These results suggest that NSAIDs induce cardiotoxicity by a ROS dependent mechanism involving mitochondrial and proteasome dysfunction and may explain why some NSAIDs should not be given to patients for long periods.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Meclofenamic Acid/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Naproxen/pharmacology , Proteasome Endopeptidase Complex/metabolism , Animals , Cell Survival/drug effects , Electron Transport Complex II/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Oxidation-Reduction , Prostaglandin-Endoperoxide Synthases/metabolism , Reactive Oxygen Species/metabolism , Ubiquitinated Proteins/metabolism
11.
Oxid Med Cell Longev ; 2015: 536962, 2015.
Article in English | MEDLINE | ID: mdl-26457127

ABSTRACT

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented. The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Cardiovascular Diseases/etiology , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arthritis/drug therapy , Cardiovascular Diseases/epidemiology , Cytochrome P-450 Enzyme System/metabolism , Humans , Incidence , Lipoxygenase/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , NADPH Oxidases/metabolism , Nitric Oxide Synthase/metabolism , Xanthine Oxidase/metabolism
12.
PLoS One ; 10(8): e0135392, 2015.
Article in English | MEDLINE | ID: mdl-26287535

ABSTRACT

Western blotting is a commonly used technique in biological research. A major problem with Western blotting is not the method itself, but the use of poor quality antibodies as well as the use of different experimental conditions that affect the linearity and sensitivity of the Western blot. Investigation of some conditions that are commonly used and often modified in Western blotting, as well as some commercial antibodies, showed that published articles often fail to report critical parameters needed to reproduce the results. These parameters include the amount of protein loaded, the blocking solution and conditions used, the amount of primary and secondary antibodies used, the antibody incubation solutions, the detection method and the quantification method utilized. In the present study, comparison of ubiquitinated proteins in rat heart and liver samples showed different results depending on the antibody utilized. Validation of five commercial ubiquitin antibodies using purified ubiquitinated proteins, ubiquitin chains and free ubiquitin showed that these antibodies differ in their ability to detect free ubiquitin or ubiquitinated proteins. Investigating proteins modified with interferon-stimulated gene 15 (ISG15) in young and old rat hearts using six commercially available antibodies showed that most antibodies gave different semi-quantitative results, suggesting large variability among antibodies. Evidence showing the importance of the Western blot buffer and the concentration of antibody used is presented. Hence there is a critical need for comprehensive reporting of experimental conditions to improve the accuracy and reproducibility of Western blot analysis. A Western blotting minimal reporting standard (WBMRS) is suggested to improve the reproducibility of Western blot analysis.


Subject(s)
Antibodies/immunology , Blotting, Western/methods , Cytokines/analysis , Ubiquitin/analysis , Animals , Cell Line , Cytokines/immunology , Male , Mice , Myocardium/metabolism , Rats , Rats, Inbred F344 , Reproducibility of Results , Ubiquitin/immunology , Ubiquitins
13.
Int J Biomed Sci ; 10(3): 158-66, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25324696

ABSTRACT

Currently, there is no specific medication for essential hypertension (EH), a major form of the condition, in man. As acetyl salicylic acid (aspirin) is reported to stimulate the synthesis of renal (r)-cortexin, an anti-essential hypertensive protein, and, as aspirin is reported to inhibit dermcidin isoform 2 (dermcidin), a causative protein for EH, the role of aspirin in the control of EH in man was studied. Oral administration of 150 mg aspirin/70 kg body weight in subjects with EH was found to reduce both the elevated systolic and diastolic blood pressures to normal levels within 3 h due to the normalization of dermcidin level in these subjects. The plasma cortexin level at day 0, 1, 30 and 90 were 0.5 pmol/ml, 155.5 pmol/ml, 160.2 pmol/ml, 190.5 pmol/ml respectively with increased NO synthesis (r=+0.994). In vitro studies demonstrated that the incubation of the goat kidney cortex cells with aspirin stimulated (r)-cortexin synthesis due to NO synthesis. It could be suggested that the use of aspirin might control EH in man.

14.
Clin Lab ; 60(7): 1187-91, 2014.
Article in English | MEDLINE | ID: mdl-25134388

ABSTRACT

BACKGROUND: High altitude illness (HAI) is a cluster of syndromes which develops due to the injury of the central nervous system produced by the reduction of the partial pressure of O2 in the atmosphere which disappears on decent. The HAI also results in a prothrombotic condition leading to acute coronary syndrome (ACS), which cannot be controlled on descent to the ground level. There is no diagnosis in HAI to forewarn of the impending ACS. A protein identified to be dermcidin isoform 2 (dermcidin), produced in the system due to environmental stresses, has been reported to be a potent diabetogenic agent. Investigation was carried out to determine the systemic stimulation of dermcidin synthesis at different levels of altitudes in normal adult male volunteers to assess the feasibility of developing a diagnosis for ACS in HAI due to dermcidin synthesis. METHODS: Normal, nondiabetic, normotensive male volunteers (25 - 35 years old, n = 16) participated in the study. The plasma dermcidin level was determined by enzyme linked immunosorbent assay (ELISA) and by in vitro translation of dermcidin mRNA. The plasma insulin level was determined by ELISA and blood glucose level was determined in a glucometer (Behringer). RESULTS: The plasma dermcidin level in the volunteers at ground level was 10 +/- 2.10 nM and increased to 80 +/- 4.62 nM at 15000 feet altitude. For each 1000 feet increase of altitude, the dermcidin level increased by 5.83 +/- 0.21 nM with a Coefficient of Correlation "r" = +0.9405. The increase of plasma dermcidin level was found to be inversely related to the decrease of plasma insulin level from 23 microunit/mL to 5 microunit/mL from sea level to 15000 feet height ("r" = -0.9951) with concomitant increase of blood sugar level from 80 +/- 3.6 mg/dL to 135 +/- 2.01 mg/dL. CONCLUSIONS: These results suggest the feasibility of a diagnosis of a prediabetic condition by determining the plasma dermcidin level in HAI by simple ELISA which may also be useful to forewarn of the possibility of developing an impending prothrombotic condition in HAI.


Subject(s)
Altitude Sickness/diagnosis , Dermcidins/blood , Enzyme-Linked Immunosorbent Assay/methods , Protein Isoforms/blood , Blood Glucose/analysis , Dermcidins/chemistry , Humans , Protein Isoforms/classification
15.
Expert Rev Proteomics ; 11(5): 549-60, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25059473

ABSTRACT

Western blotting is one of the most commonly used laboratory techniques for identifying proteins and semi-quantifying protein amounts; however, several recent findings suggest that western blots may not be as reliable as previously assumed. This is not surprising since many labs are unaware of the limitations of western blotting. In this manuscript, we review essential strategies for improving confidence in the accuracy of western blots. These strategies include selecting the best normalization standard, proper sample preparation, determining the linear range for antibodies and protein stains relevant to the sample of interest, confirming the quality of the primary antibody, preventing signal saturation and accurately quantifying the signal intensity of the target protein. Although western blotting is a powerful and indispensable scientific technique that can be used to accurately quantify relative protein levels, it is necessary that proper experimental techniques and strategies are employed.


Subject(s)
Blotting, Western/standards , Antibodies/chemistry , Blotting, Western/methods , Proteins/analysis , Proteins/standards , Reference Standards , Staining and Labeling
16.
Cardiol Res Pract ; 2014: 412815, 2014.
Article in English | MEDLINE | ID: mdl-24649391

ABSTRACT

The effect of dermcidin isoform 2 (dermcidin), an environmentally induced stress protein, was investigated on the genesis of diabetes mellitus and hypertension, the two major atherosclerotic risk factors. The role of dermcidin as an atherosclerotic risk factor related to the impaired systemic insulin level was investigated. Dermcidin was prepared by electrophoresis using plasma from the subjects with acute ischemic heart disease. Injection of 0.2 µM dermcidin in mice increased the blood glucose level from 98 ± 2.45 mg/dL to 350 ± 10.2 mg/dL which was normalized by the oral administration of acetyl salicylic acid (aspirin) after 24 h. Hypertensive subjects with systolic and diastolic blood pressure of 165 mm and 95 mm of Hg, respectively, had plasma dermcidin level of 95 nM. Ingestion of acetyl salicylic acid (aspirin) (150 mg/70 kg body weight) decreased the systolic and diastolic pressures to 125 mm and 80 mm of Hg, respectively, with decrease of dermcidin level to 15 nM. Incubation of kidney cortex cells with 0.2 µM dermcidin-inhibited synthesis of (r)-cortexin, an antihypertensive protein, and the basal (r)-cortexin level was reduced from 33 nM to 15 nM. Addition of 25 µunits of insulin/mL was found to reverse the inhibition of cortexin synthesis. The effect of dermcidin as a diabetogenic and a hypertensive agent could be controlled either by aspirin or by insulin.

17.
PLoS One ; 9(2): e88639, 2014.
Article in English | MEDLINE | ID: mdl-24558405

ABSTRACT

INTRODUCTION: Excessive aggregation of platelets at the site of plaque rupture on the coronary artery led to the formation of thrombus which is reported to precipitate acute myocardial infarction (AMI). Nitric oxide (NO) has been reported to inhibit platelet aggregation and induce thrombolysis through the in situ formation of plasmin. As the plasma NO level in AMI patients from two different ethnic groups was reduced to 0 µM (median) compared to 4.0 µM (median) in normal controls, the effect of restoration of the NO level to normal ranges on the rate of death due to AMI was determined. METHODS AND RESULTS: The restoration of plasma NO level was achieved by a sticking small cotton pad (10×25 mm) containing 0.28 mmol sodium nitroprusside (SNP) in 0.9% NaCl to the abdominal skin of the participants using non-toxic adhesive tape which was reported to normalize the plasma NO level. The participants (8,283) were volunteers in an independent study who had different kinds of cancers and did not wish to use any conventional therapy for their condition but opted to receive SNP "pad" for their condition for 3 years. The use of SNP "pad" which normalized (≈4.0 µM) the plasma NO level that in consequence reduced the death rate due to AMI, among the participants, was found to be significantly reduced compared to the death due to AMI in normal population. CONCLUSION: Our data suggested that the use of SNP "pad" significantly reduced the death due to AMI. TRIAL REGISTRATION: www.ctri.nic.in CTRI/2013/12/004236.


Subject(s)
Myocardial Infarction/blood , Myocardial Infarction/mortality , Neoplasms/complications , Nitric Oxide/blood , Nitroprusside/pharmacology , Adenosine Diphosphate/adverse effects , Aged , Aged, 80 and over , Case-Control Studies , Coronary Thrombosis/chemically induced , Coronary Thrombosis/prevention & control , Female , Humans , Male , Middle Aged , Myocardial Infarction/complications , Peptides/blood
19.
PLoS One ; 8(12): e81935, 2013.
Article in English | MEDLINE | ID: mdl-24349154

ABSTRACT

INTRODUCTION: Glucose has been reported to have an essential role in the synthesis and secretion of insulin in hepatocytes. As the efflux of glucose is facilitated from the liver cells into the circulation, the mechanism of transportation of glucose into the hepatocytes for the synthesis of insulin was investigated. METHODS: Grated liver suspension (GLS) was prepared by grating intact liver from adult mice by using a grater. Nitric oxide (NO) was measured by methemoglobin method. Glucose transporter-4 (Glut-4) was measured by immunoblot technique using Glut-4 antibody. RESULTS: Incubation of GLS with different amounts of glucose resulted in the uptake of glucose by the suspension with increased NO synthesis due to the stimulation of a glucose activated nitric oxide synthase that was present in the liver membrane. The inhibition of glucose induced NO synthesis resulted in the inhibition of glucose uptake. Glucose at 0.02M that maximally increased NO synthesis in the hepatocytes led to the translocation and increased synthesis of Glut-4 by 3.3 fold over the control that was inhibited by the inhibition of NO synthesis. The glucose induced NO synthesis was also found to result in the synthesis of insulin, in the presence of glucose due to the expression of both proinsulin genes I and II in the liver cells. CONCLUSION: It was concluded that glucose itself facilitated its own transportation in the liver cells both via Glut-4 and by the synthesis of NO which had an essential role for insulin synthesis in the presence of glucose in these cells.


Subject(s)
Glucose Transporter Type 4/biosynthesis , Glucose/pharmacology , Hepatocytes/drug effects , Insulin/biosynthesis , Liver/drug effects , Nitric Oxide Synthase Type II/metabolism , Animals , Enzyme Activation , Female , Gene Expression , Glucose/metabolism , Glucose Transporter Type 4/genetics , Hepatocytes/cytology , Hepatocytes/metabolism , Insulin/genetics , Liver/cytology , Liver/metabolism , Male , Mice , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/genetics , Primary Cell Culture , Proinsulin/genetics , Proinsulin/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport
20.
Clin Lab ; 59(5-6): 475-81, 2013.
Article in English | MEDLINE | ID: mdl-23865344

ABSTRACT

BACKGROUND: More than 90% of all hypertensive persons are reported to have essential hypertension (EH), a particular form of elevated blood pressure, for which no diagnostic test is currently available. The level of plasma renal (R) cortexin (PRC), a hypotensive protein produced in the kidney cortex cells, was reported to be reduced from 218 nM in the plasma of normotensive persons (NP) to 0 nM in the plasma of patients with EH. The feasibility of using the determination of PRC by enzyme-linked immunosorbent assay (ELISA) as a diagnostic test for EH was investigated. METHODS: The PRC was determined by ELISA using electrophoretically pure cortexin as the antigen. A total of 344 persons (male and female) with EH, with or without diabetes mellitus (DM), and receiving or not receiving any anti-hypertensive and/or anti-diabetic medication at presentation, as well as an equal number of age- and gender-matched NP participated in the study. RESULTS: All persons with EH, with or without co-existing DM, were found to have 0 nM PRC, regardless of whether they were receiving anti-hypertensive and anti-diabetic drugs, including those who had been taking these medications over an extended period of time (3 months). CONCLUSIONS: The determination of PRC as a marker protein by ELISA, a rapid method that can be carried out in any diagnostic laboratory, was shown to be suitable for the diagnosis of EH, even in those subjects who had co-existing DM and were receiving both anti-hypertensive and anti-diabetic medication.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Hypertension/blood , Peptides/blood , Adult , Antihypertensive Agents/therapeutic use , Biomarkers/blood , Diabetes Complications/blood , Diabetes Complications/drug therapy , Female , Humans , Hyperglycemia/blood , Hyperglycemia/drug therapy , Hypertension/drug therapy , Hypoglycemic Agents/therapeutic use , Intercellular Signaling Peptides and Proteins , Male , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...