Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chaos ; 34(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829788

ABSTRACT

Higher-order interactions have been instrumental in characterizing the intricate complex dynamics in a diverse range of large-scale complex systems. Our study investigates the effect of attractive and repulsive higher-order interactions in globally and non-locally coupled prey-predator Rosenzweig-MacArthur systems. Such interactions lead to the emergence of complex spatiotemporal chimeric states, which are otherwise unobserved in the model system with only pairwise interactions. Our model system exhibits a second-order transition from a chimera-like state (mixture of oscillating and steady state nodes) to a chimera-death state through a supercritical Hopf bifurcation. The origin of these states is discussed in detail along with the effect of the higher-order non-local topology which leads to the rise of a distinct and dynamical state termed as "amplitude-mediated chimera-like states." Our study observes that the introduction of higher-order attractive and repulsive interactions exhibit incoherence and promote persistence in consumer-resource population dynamics as opposed to susceptibility shown by synchronized dynamics with only pairwise interactions, and these results may be of interest to conservationists and theoretical ecologists studying the effect of competing interactions in ecological networks.

2.
Phys Rev E ; 108(4-1): 044207, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978677

ABSTRACT

We investigate the dynamical evolution of Stuart-Landau oscillators globally coupled through conjugate or dissimilar variables on simplicial complexes. We report a first-order explosive phase transition from an oscillatory state to oscillation death, with higher-order (2-simplex triadic) interactions, as opposed to the second-order transition with only pairwise (1-simplex) interactions. Moreover, the system displays four distinct homogeneous steady states in the presence of triadic interactions, in contrast to the two homogeneous steady states observed with dyadic interactions. We calculate the backward transition point analytically, confirming the numerical results and providing the origin of the dynamical states in the transition region. The results are robust against the application of noise. The study will be useful in understanding complex systems, such as ecological and epidemiological, having higher-order interactions and coupling through conjugate variables.

SELECTION OF CITATIONS
SEARCH DETAIL