Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Nat Methods ; 21(5): 804-808, 2024 May.
Article in English | MEDLINE | ID: mdl-38191935

ABSTRACT

Neuroimaging research requires purpose-built analysis software, which is challenging to install and may produce different results across computing environments. The community-oriented, open-source Neurodesk platform ( https://www.neurodesk.org/ ) harnesses a comprehensive and growing suite of neuroimaging software containers. Neurodesk includes a browser-accessible virtual desktop, command-line interface and computational notebook compatibility, allowing for accessible, flexible, portable and fully reproducible neuroimaging analysis on personal workstations, high-performance computers and the cloud.


Subject(s)
Neuroimaging , Software , Neuroimaging/methods , Humans , User-Computer Interface , Reproducibility of Results , Brain/diagnostic imaging
2.
medRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-33501466

ABSTRACT

Introduction: Detecting voice disorders from voice recordings could allow for frequent, remote, and low-cost screening before costly clinical visits and a more invasive laryngoscopy examination. Our goals were to detect unilateral vocal fold paralysis (UVFP) from voice recordings using machine learning, to identify which acoustic variables were important for prediction to increase trust, and to determine model performance relative to clinician performance. Methods: Patients with confirmed UVFP through endoscopic examination (N=77) and controls with normal voices matched for age and sex (N=77) were included. Voice samples were elicited by reading the Rainbow Passage and sustaining phonation of the vowel "a". Four machine learning models of differing complexity were used. SHapley Additive explanations (SHAP) was used to identify important features. Results: The highest median bootstrapped ROC AUC score was 0.87 and beat clinician's performance (range: 0.74 - 0.81) based on the recordings. Recording durations were different between UVFP recordings and controls due to how that data was originally processed when storing, which we can show can classify both groups. And counterintuitively, many UVFP recordings had higher intensity than controls, when UVFP patients tend to have weaker voices, revealing a dataset-specific bias which we mitigate in an additional analysis. Conclusion: We demonstrate that recording biases in audio duration and intensity created dataset-specific differences between patients and controls, which models used to improve classification. Furthermore, clinician's ratings provide further evidence that patients were over-projecting their voices and being recorded at a higher amplitude signal than controls. Interestingly, after matching audio duration and removing variables associated with intensity in order to mitigate the biases, the models were able to achieve a similar high performance. We provide a set of recommendations to avoid bias when building and evaluating machine learning models for screening in laryngology.

3.
ArXiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37744469

ABSTRACT

The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.

4.
Front Neuroinform ; 17: 1174156, 2023.
Article in English | MEDLINE | ID: mdl-37533796

ABSTRACT

The biomedical research community is motivated to share and reuse data from studies and projects by funding agencies and publishers. Effectively combining and reusing neuroimaging data from publicly available datasets, requires the capability to query across datasets in order to identify cohorts that match both neuroimaging and clinical/behavioral data criteria. Critical barriers to operationalizing such queries include, in part, the broad use of undefined study variables with limited or no annotations that make it difficult to understand the data available without significant interaction with the original authors. Using the Brain Imaging Data Structure (BIDS) to organize neuroimaging data has made querying across studies for specific image types possible at scale. However, in BIDS, beyond file naming and tightly controlled imaging directory structures, there are very few constraints on ancillary variable naming/meaning or experiment-specific metadata. In this work, we present NIDM-Terms, a set of user-friendly terminology management tools and associated software to better manage individual lab terminologies and help with annotating BIDS datasets. Using these tools to annotate BIDS data with a Neuroimaging Data Model (NIDM) semantic web representation, enables queries across datasets to identify cohorts with specific neuroimaging and clinical/behavioral measurements. This manuscript describes the overall informatics structures and demonstrates the use of tools to annotate BIDS datasets to perform integrated cross-cohort queries.

5.
bioRxiv ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37645999

ABSTRACT

Neuroimaging research faces a crisis of reproducibility. With massive sample sizes and greater data complexity, this problem becomes more acute. Software that operates on imaging data defined using the Brain Imaging Data Structure (BIDS) - BIDS Apps - have provided a substantial advance. However, even using BIDS Apps, a full audit trail of data processing is a necessary prerequisite for fully reproducible research. Obtaining a faithful record of the audit trail is challenging - especially for large datasets. Recently, the FAIRly big framework was introduced as a way to facilitate reproducible processing of large-scale data by leveraging DataLad - a version control system for data management. However, the current implementation of this framework was more of a proof of concept, and could not be immediately reused by other investigators for different use cases. Here we introduce the BIDS App Bootstrap (BABS), a user-friendly and generalizable Python package for reproducible image processing at scale. BABS facilitates the reproducible application of BIDS Apps to large-scale datasets. Leveraging DataLad and the FAIRly big framework, BABS tracks the full audit trail of data processing in a scalable way by automatically preparing all scripts necessary for data processing and version tracking on high performance computing (HPC) systems. Currently, BABS supports jobs submissions and audits on Sun Grid Engine (SGE) and Slurm HPCs with a parsimonious set of programs. To demonstrate its scalability, we applied BABS to data from the Healthy Brain Network (HBN; n=2,565). Taken together, BABS allows reproducible and scalable image processing and is broadly extensible via an open-source development model.

6.
Histochem Cell Biol ; 160(3): 223-251, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37428210

ABSTRACT

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself-OME-Zarr-along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain-the file format that underlies so many personal, institutional, and global data management and analysis tasks.


Subject(s)
Microscopy , Software , Humans , Community Support
7.
PLoS Biol ; 21(6): e3002133, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37390046

ABSTRACT

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.


Subject(s)
Brain , Neurosciences , Animals , Humans , Mice , Ecosystem , Neurons
8.
bioRxiv ; 2023 May 07.
Article in English | MEDLINE | ID: mdl-36865282

ABSTRACT

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself -- OME-Zarr -- along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain -- the file format that underlies so many personal, institutional, and global data management and analysis tasks.

9.
Res Sq ; 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36993557

ABSTRACT

Neuroimaging data analysis often requires purpose-built software, which can be challenging to install and may produce different results across computing environments. Beyond being a roadblock to neuroscientists, these issues of accessibility and portability can hamper the reproducibility of neuroimaging data analysis pipelines. Here, we introduce the Neurodesk platform, which harnesses software containers to support a comprehensive and growing suite of neuroimaging software (https://www.neurodesk.org/). Neurodesk includes a browser-accessible virtual desktop environment and a command line interface, mediating access to containerized neuroimaging software libraries on various computing platforms, including personal and high-performance computers, cloud computing and Jupyter Notebooks. This community-oriented, open-source platform enables a paradigm shift for neuroimaging data analysis, allowing for accessible, flexible, fully reproducible, and portable data analysis pipelines.

10.
Nat Methods ; 19(12): 1568-1571, 2022 12.
Article in English | MEDLINE | ID: mdl-36456786

ABSTRACT

Reference anatomies of the brain ('templates') and corresponding atlases are the foundation for reporting standardized neuroimaging results. Currently, there is no registry of templates and atlases; therefore, the redistribution of these resources occurs either bundled within existing software or in ad hoc ways such as downloads from institutional sites and general-purpose data repositories. We introduce TemplateFlow as a publicly available framework for human and non-human brain models. The framework combines an open database with software for access, management, and vetting, allowing scientists to share their resources under FAIR-findable, accessible, interoperable, and reusable-principles. TemplateFlow enables multifaceted insights into brains across species, and supports multiverse analyses testing whether results generalize across standard references, scales, and in the long term, species.


Subject(s)
Nervous System Physiological Phenomena , Neuroimaging , Brain , Databases, Factual , Problem Solving
11.
J Psychiatr Res ; 156: 261-267, 2022 12.
Article in English | MEDLINE | ID: mdl-36274531

ABSTRACT

Early identification of bipolar disorder may provide appropriate support and treatment, however there is no current evidence for statistically predicting whether a child will develop bipolar disorder. Machine learning methods offer an opportunity for developing empirically-based predictors of bipolar disorder. This study examined whether bipolar disorder can be predicted using clinical data and machine learning algorithms. 492 children, ages 6-18 at baseline, were recruited from longitudinal case-control family studies. Participants were assessed at baseline, then followed-up after 10 years. In addition to sociodemographic data, children were assessed with psychometric scales, structured diagnostic interviews, and cognitive and social functioning assessments. Using the Balanced Random Forest algorithm, we examined whether the diagnostic outcome of full or subsyndromal bipolar disorder could be predicted from baseline data. 45 children (10%) developed bipolar disorder at follow-up. The model predicted subsequent bipolar disorder with 75% sensitivity, 76% specificity, and an Area Under the Receiver Operating Characteristics of 75%. Predictors best differentiating between children who did or did not develop bipolar disorder were the Child Behavioral Checklist Externalizing and Internalizing behaviors, the Child Behavioral Checklist Total t-score, problematic school functions indexed through the Child Behavioral Checklist School Competence scale, and the Child Behavioral Checklist Anxiety/Depression and Aggression scales. Our study provides the first quantitative model to predict bipolar disorder. Longitudinal prediction may help clinicians assess children with emergent psychopathology for future risk of bipolar disorder, an area of clinical and scientific importance. Machine learning algorithms could be implemented to alert clinicians to risk for bipolar disorder.


Subject(s)
Bipolar Disorder , Child , Humans , Adolescent , Bipolar Disorder/diagnosis , Machine Learning
12.
Elife ; 112022 08 30.
Article in English | MEDLINE | ID: mdl-36040302

ABSTRACT

Functional magnetic resonance imaging (fMRI) has revolutionized cognitive neuroscience, but methodological barriers limit the generalizability of findings from the lab to the real world. Here, we present Neuroscout, an end-to-end platform for analysis of naturalistic fMRI data designed to facilitate the adoption of robust and generalizable research practices. Neuroscout leverages state-of-the-art machine learning models to automatically annotate stimuli from dozens of fMRI studies using naturalistic stimuli-such as movies and narratives-allowing researchers to easily test neuroscientific hypotheses across multiple ecologically-valid datasets. In addition, Neuroscout builds on a robust ecosystem of open tools and standards to provide an easy-to-use analysis builder and a fully automated execution engine that reduce the burden of reproducible research. Through a series of meta-analytic case studies, we validate the automatic feature extraction approach and demonstrate its potential to support more robust fMRI research. Owing to its ease of use and a high degree of automation, Neuroscout makes it possible to overcome modeling challenges commonly arising in naturalistic analysis and to easily scale analyses within and across datasets, democratizing generalizable fMRI research.


Subject(s)
Ecosystem , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Brain Mapping/methods , Machine Learning , Magnetic Resonance Imaging/methods
13.
Front Neurosci ; 16: 871228, 2022.
Article in English | MEDLINE | ID: mdl-35516811

ABSTRACT

The Brain Imaging Data Structure (BIDS) is a specification for organizing, sharing, and archiving neuroimaging data and metadata in a reusable way. First developed for magnetic resonance imaging (MRI) datasets, the community-led specification evolved rapidly to include other modalities such as magnetoencephalography, positron emission tomography, and quantitative MRI (qMRI). In this work, we present an extension to BIDS for microscopy imaging data, along with example datasets. Microscopy-BIDS supports common imaging methods, including 2D/3D, ex/in vivo, micro-CT, and optical and electron microscopy. Microscopy-BIDS also includes comprehensible metadata definitions for hardware, image acquisition, and sample properties. This extension will facilitate future harmonization efforts in the context of multi-modal, multi-scale imaging such as the characterization of tissue microstructure with qMRI.

14.
Front Neurosci ; 16: 751595, 2022.
Article in English | MEDLINE | ID: mdl-35392412

ABSTRACT

Inferior colliculus (IC) is an obligatory station along the ascending auditory pathway that also has a high degree of top-down convergence via efferent pathways, making it a major computational hub. Animal models have attributed critical roles for the IC in in mediating auditory plasticity, egocentric selection, and noise exclusion. IC contains multiple functionally distinct subdivisions. These include a central nucleus that predominantly receives ascending inputs and external and dorsal nuclei that receive more heterogeneous inputs, including descending and multisensory connections. Subdivisions of human IC have been challenging to identify and quantify using standard brain imaging techniques such as MRI, and the connectivity of each of these subnuclei has not been identified in the human brain. In this study, we estimated the connectivity of human IC subdivisions with diffusion MRI (dMRI) tractography, using both anatomical-based seed analysis as well as unsupervised k-means clustering. We demonstrate sensitivity of tractography to overall IC connections in both high resolution post mortem and in vivo datasets. k-Means clustering of the IC streamlines in both the post mortem and in vivo datasets generally segregated streamlines based on their terminus beyond IC, such as brainstem, thalamus, or contralateral IC. Using fine-grained anatomical segmentations of the major IC subdivisions, the post mortem dataset exhibited unique connectivity patterns from each subdivision, including commissural connections through dorsal IC and lateral lemniscal connections to central and external IC. The subdivisions were less distinct in the context of in vivo connectivity, although lateral lemniscal connections were again highest to central and external IC. Overall, the unsupervised and anatomically driven methods provide converging evidence for distinct connectivity profiles for each of the IC subdivisions in both post mortem and in vivo datasets, suggesting that dMRI tractography with high quality data is sensitive to neural pathways involved in auditory processing as well as top-down control of incoming auditory information.

15.
Neuroinformatics ; 20(2): 507-512, 2022 04.
Article in English | MEDLINE | ID: mdl-35061216

ABSTRACT

In this perspective article, we consider the critical issue of data and other research object standardisation and, specifically, how international collaboration, and organizations such as the International Neuroinformatics Coordinating Facility (INCF) can encourage that emerging neuroscience data be Findable, Accessible, Interoperable, and Reusable (FAIR). As neuroscientists engaged in the sharing and integration of multi-modal and multiscale data, we see the current insufficiency of standards as a major impediment in the Interoperability and Reusability of research results. We call for increased international collaborative standardisation of neuroscience data to foster integration and efficient reuse of research objects.


Subject(s)
Data Collection , Neurosciences
17.
Neuroinformatics ; 20(1): 25-36, 2022 01.
Article in English | MEDLINE | ID: mdl-33506383

ABSTRACT

There is great need for coordination around standards and best practices in neuroscience to support efforts to make neuroscience a data-centric discipline. Major brain initiatives launched around the world are poised to generate huge stores of neuroscience data. At the same time, neuroscience, like many domains in biomedicine, is confronting the issues of transparency, rigor, and reproducibility. Widely used, validated standards and best practices are key to addressing the challenges in both big and small data science, as they are essential for integrating diverse data and for developing a robust, effective, and sustainable infrastructure to support open and reproducible neuroscience. However, developing community standards and gaining their adoption is difficult. The current landscape is characterized both by a lack of robust, validated standards and a plethora of overlapping, underdeveloped, untested and underutilized standards and best practices. The International Neuroinformatics Coordinating Facility (INCF), an independent organization dedicated to promoting data sharing through the coordination of infrastructure and standards, has recently implemented a formal procedure for evaluating and endorsing community standards and best practices in support of the FAIR principles. By formally serving as a standards organization dedicated to open and FAIR neuroscience, INCF helps evaluate, promulgate, and coordinate standards and best practices across neuroscience. Here, we provide an overview of the process and discuss how neuroscience can benefit from having a dedicated standards body.


Subject(s)
Neurosciences , Reproducibility of Results
18.
IEEE Open J Eng Med Biol ; 3: 235-241, 2022.
Article in English | MEDLINE | ID: mdl-36819937

ABSTRACT

Goal: Official tests for COVID-19 are time consuming, costly, can produce high false negatives, use up vital chemicals and may violate social distancing laws. Therefore, a fast and reliable additional solution using recordings of cough, breathing and speech data for preliminary screening may help alleviate these issues. Objective: This scoping review explores how Artificial Intelligence (AI) technology aims to detect COVID-19 disease by using cough, breathing and speech recordings, as reported in the literature. Here, we describe and summarize attributes of the identified AI techniques and datasets used for their implementation. Methods: A scoping review was conducted following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). Electronic databases (Google Scholar, Science Direct, and IEEE Xplore) were searched between 1st April 2020 and 15th August 2021. Terms were selected based on the target intervention (i.e., AI), the target disease (i.e., COVID-19) and acoustic correlates of the disease (i.e., speech, breathing and cough). A narrative approach was used to summarize the extracted data. Results: 24 studies and 8 Apps out of the 86 retrieved studies met the inclusion criteria. Half of the publications and Apps were from the USA. The most prominent AI architecture used was a convolutional neural network, followed by a recurrent neural network. AI models were mainly trained, tested and run-on websites and personal computers, rather than on phone apps. More than half of the included studies reported area-under-the-curve performance of greater than 0.90 on symptomatic and negative datasets while one study achieved 100% sensitivity in predicting asymptomatic COVID-19 from cough-, breathing- or speech-based acoustic features. Conclusions: The included studies show that AI has the potential to help detect COVID-19 using cough, breathing and speech samples. The proposed methods (with some time and appropriate clinical testing) could prove to be an effective method in detecting various diseases related to respiratory and neurophysiological changes in the human body.

19.
J Med Internet Res ; 23(11): e22369, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34762054

ABSTRACT

BACKGROUND: Universal access to assessment and treatment of mental health and learning disorders remains a significant and unmet need. There are many people without access to care because of economic, geographic, and cultural barriers, as well as the limited availability of clinical experts who could help advance our understanding and treatment of mental health. OBJECTIVE: This study aims to create an open, configurable software platform to build clinical measures, mobile assessments, tasks, and interventions without programming expertise. Specifically, our primary requirements include an administrator interface for creating and scheduling recurring and customized questionnaires where end users receive and respond to scheduled notifications via an iOS or Android app on a mobile device. Such a platform would help relieve overwhelmed health systems and empower remote and disadvantaged subgroups in need of accurate and effective information, assessment, and care. This platform has the potential to advance scientific research by supporting the collection of data with instruments tailored to specific scientific questions from large, distributed, and diverse populations. METHODS: We searched for products that satisfy these requirements. We designed and developed a new software platform called MindLogger, which exceeds the requirements. To demonstrate the platform's configurability, we built multiple applets (collections of activities) within the MindLogger mobile app and deployed several of them, including a comprehensive set of assessments underway in a large-scale, longitudinal mental health study. RESULTS: Of the hundreds of products we researched, we found 10 that met our primary requirements with 4 that support end-to-end encryption, 2 that enable restricted access to individual users' data, 1 that provides open-source software, and none that satisfy all three. We compared features related to information presentation and data capture capabilities; privacy and security; and access to the product, code, and data. We successfully built MindLogger mobile and web applications, as well as web browser-based tools for building and editing new applets and for administering them to end users. MindLogger has end-to-end encryption, enables restricted access, is open source, and supports a variety of data collection features. One applet is currently collecting data from children and adolescents in our mental health study, and other applets are in different stages of testing and deployment for use in clinical and research settings. CONCLUSIONS: We demonstrated the flexibility and applicability of the MindLogger platform through its deployment in a large-scale, longitudinal, mobile mental health study and by building a variety of other mental health-related applets. With this release, we encourage a broad range of users to apply the MindLogger platform to create and test applets to advance health care and scientific research. We hope that increasing the availability of applets designed to assess and administer interventions will facilitate access to health care in the general population.


Subject(s)
Mobile Applications , Psychiatry , Telemedicine , Adolescent , Humans , Mental Health , Surveys and Questionnaires
20.
Article in English | MEDLINE | ID: mdl-35224567

ABSTRACT

Every day, individuals post suicide notes on social media asking for support, resources, and reasons to live. Some posts receive few comments while others receive many. While prior studies have analyzed whether specific responses are more or less helpful, it is not clear if the quantity of comments received is beneficial in reducing symptoms or in keeping the user engaged with the platform and hence with life. In the present study, we create a large dataset of users' first r/SuicideWatch (SW) posts from Reddit (N=21,274), collect the comments as well as the user's subsequent posts (N=1,615,699) to determine whether they post in SW again in the future. We use propensity score stratification, a causal inference method for observational data, and estimate whether the amount of comments -as a measure of social support- increases or decreases the likelihood of posting again on SW. One hypothesis is that receiving more comments may decrease the likelihood of the user posting in SW in the future, either by reducing symptoms or because comments from untrained peers may be harmful. On the contrary, we find that receiving more comments increases the likelihood a user will post in SW again. We discuss how receiving more comments is helpful, not by permanently relieving symptoms since users make another SW post and their second posts have similar mentions of suicidal ideation, but rather by reinforcing users to seek support and remain engaged with the platform. Furthermore, since receiving only 1 comment -the most common case- decreases the likelihood of posting again by 14% on average depending on the time window, it is important to develop systems that encourage more commenting.

SELECTION OF CITATIONS
SEARCH DETAIL
...