Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 269, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443489

ABSTRACT

Over the course of evolution, the amygdala (AMG) and medial frontal cortex (mPFC) network, involved in behavioral adaptation, underwent structural changes in the old-world monkey and human lineages. Yet, whether and how the functional organization of this network differs remains poorly understood. Using resting-state functional magnetic resonance imagery, we show that the functional connectivity (FC) between AMG nuclei and mPFC regions differs between humans and awake macaques. In humans, the AMG-mPFC FC displays U-shaped pattern along the corpus callosum: a positive FC with the ventromedial prefrontal (vmPFC) and anterior cingulate cortex (ACC), a negative FC with the anterior mid-cingulate cortex (MCC), and a positive FC with the posterior MCC. Conversely, in macaques, the negative FC shifted more ventrally at the junction between the vmPFC and the ACC. The functional organization divergence of AMG-mPFC network between humans and macaques might help understanding behavioral adaptation abilities differences in their respective socio-ecological niches.


Subject(s)
Macaca , Prefrontal Cortex , Humans , Animals , Prefrontal Cortex/diagnostic imaging , Amygdala/diagnostic imaging , Frontal Lobe , Cerebral Cortex
2.
Sci Adv ; 9(20): eadf9445, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37205762

ABSTRACT

Detailed neuroscientific data from macaque monkeys have been essential in advancing understanding of human frontal cortex function, particularly for regions of frontal cortex without homologs in other model species. However, precise transfer of this knowledge for direct use in human applications requires an understanding of monkey to hominid homologies, particularly whether and how sulci and cytoarchitectonic regions in the frontal cortex of macaques relate to those in hominids. We combine sulcal pattern analysis with resting-state functional magnetic resonance imaging and cytoarchitectonic analysis to show that old-world monkey brains have the same principles of organization as hominid brains, with the notable exception of sulci in the frontopolar cortex. This essential comparative framework provides insights into primate brain evolution and a key tool to drive translation from invasive research in monkeys to human applications.


Subject(s)
Hominidae , Magnetic Resonance Imaging , Animals , Humans , Magnetic Resonance Imaging/methods , Frontal Lobe/diagnostic imaging , Primates , Brain Mapping/methods , Macaca , Cercopithecidae
3.
Cereb Cortex ; 32(18): 4050-4067, 2022 09 04.
Article in English | MEDLINE | ID: mdl-34974618

ABSTRACT

A critical aspect of neuroscience is to establish whether and how brain networks evolved across primates. To date, most comparative studies have used resting-state functional magnetic resonance imaging (rs-fMRI) in anaesthetized nonhuman primates and in awake humans. However, anaesthesia strongly affects rs-fMRI signals. The present study investigated the impact of the awareness state (anaesthesia vs. awake) within the same group of macaque monkeys on the rs-fMRI functional connectivity organization of a well-characterized network in the human brain, the cingulo-frontal lateral network. Results in awake macaques show that rostral seeds in the cingulate sulcus exhibited stronger correlation strength with rostral compared to caudal lateral frontal cortical areas, while more caudal seeds displayed stronger correlation strength with caudal compared to anterior lateral frontal cortical areas. Critically, this inverse rostro-caudal functional gradient was abolished under anaesthesia. This study demonstrated a similar functional connectivity (FC) organization of the cingulo-frontal cortical network in awake macaque to that previously uncovered in the human brain pointing toward a preserved FC organization from macaque to human. However, it can only be observed in awake state suggesting that this network is sensitive to anaesthesia and warranting significant caution when comparing FC patterns across species under different states.


Subject(s)
Anesthesia , Brain Mapping , Animals , Frontal Lobe/diagnostic imaging , Humans , Macaca , Magnetic Resonance Imaging/methods
4.
Commun Biol ; 4(1): 54, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420330

ABSTRACT

The paracingulate sulcus -PCGS- has been considered for a long time to be specific to the human brain. Its presence/absence has been discussed in relation to interindividual variability of personality traits and cognitive abilities. Recently, a putative PCGS has been observed in chimpanzee brains. To demonstrate that this newly discovered sulcus is the homologue of the PCGS in the human brain, we analyzed cytoarchitectonic and resting-state functional magnetic resonance imaging data in chimpanzee brains which did or did not display a PCGS. The results show that the organization of the mid-cingulate cortex of the chimpanzee brain is comparable to that of the human brain, both cytoarchitectonically and in terms of functional connectivity with the lateral frontal cortex. These results demonstrate that the PCGS is not human-specific but is a shared feature of the primate brain since at least the last common ancestor to humans and great apes ~6 mya.


Subject(s)
Frontal Lobe/anatomy & histology , Pan troglodytes/anatomy & histology , Animals , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiology , Humans , Magnetic Resonance Imaging , Pan troglodytes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...