Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
PLoS One ; 19(4): e0301932, 2024.
Article in English | MEDLINE | ID: mdl-38626101

ABSTRACT

It is widely accepted that cognitive load plays a crucial role in online learning. However, despite neurodevelopmental conditions being the largest category of qualifying disabilities in education, and the rise of online learning, there is little understanding of the factors impacting cognitive load in online learning for neurodivergent students and how these factors differ from those affecting neurotypical students. This study used qualitative comparison groups with neurotypical and neurodivergent students to examine their experiences of cognitive load in online learning. A sample of 26 university students (14 neurotypical and 12 neurodivergent) participated in focus group discussions. While neurodivergent students reported many similar experiences of cognitive load in online learning compared to their neurotypical peers-such as confusion in navigating the content and technical issues-some difficulties were more present for neurodivergent students-such as transcripts including mistakes and inaccessible content presentation-creating additional barriers in effectively engaging with the educational content. The results suggest that neurotypical and neurodivergent students experience similar challenges, albeit to differing degrees of intensity, and that more research is needed to explore the relationship between neurodiversity and cognitive load in online learning.


Subject(s)
Education, Distance , Humans , Focus Groups , Education, Distance/methods , Students/psychology , Peer Group , Cognition
2.
MethodsX ; 12: 102658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38510933

ABSTRACT

In this paper, we developed an experimental checklist for laboratory experiments including neurodiverse participants, particularly those with attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and dyslexia. The checklist suggests additions to the basic requirements for ethical laboratory-based studies with human participants. The suggestions emphasize physical comfort, the agency of participants concerning environmental adjustments, clarity of communication, and a focus on participants' overall well-being. Those methodological guidelines aim to help researchers in facilitating inclusive and accessible laboratory environments for neurodiverse participants in order to: •Enhance research validity by minimizing the influence of factors that affect responses in neuroscience experiments.•Facilitate research recruitment by encouraging continued participation in future studies and increasing word-of-mouth.•Improve research dissemination by fostering a more positive perception of the research process amongst neurodiverse individuals and encouraging community involvement.

3.
Eur J Neurosci ; 59(2): 256-282, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38109476

ABSTRACT

Working memory is integral to a range of critical cognitive functions such as reasoning and decision-making. Although alterations in working memory have been observed in neurodivergent populations, there has been no review mapping how cognitive load is measured in common neurodevelopmental conditions such as attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and dyslexia. This scoping review explores the neurophysiological measures used to study cognitive load in these specific populations. Our findings highlight that electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are the most frequently used methods, with a limited number of studies employing functional near-infrared spectroscopy (fNIRs), magnetoencephalography (MEG) or eye-tracking. Notably, eye-related measures are less commonly used, despite their prominence in cognitive load research among neurotypical individuals. The review also highlights potential correlates of cognitive load, such as neural oscillations in the theta and alpha ranges for EEG studies, blood oxygenation level-dependent (BOLD) responses in lateral and medial frontal brain regions for fMRI and fNIRS studies and eye-related measures such as pupil dilation and blink rate. Finally, critical issues for future studies are discussed, including the technical challenges associated with multimodal approaches, the possible impact of atypical features on cognitive load measures and balancing data richness with participant well-being. These insights contribute to a more nuanced understanding of cognitive load measurement in neurodivergent populations and point to important methodological considerations for future neuroscientific research in this area.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Dyslexia , Humans , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain , Cognition , Dyslexia/diagnostic imaging
4.
Psychopharmacology (Berl) ; 240(10): 2045-2060, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37500785

ABSTRACT

RATIONALE: Working memory deficits and associated neurofunctional abnormalities are frequently reported in attention-deficit/hyperactivity disorder (ADHD). Methylphenidate and atomoxetine improve working memory performance and increase activation of regions under-functioning in ADHD. Additionally, methylphenidate has been observed to modulate functional networks involved in working memory. No research, however, has examined the effects of atomoxetine or compared the two drugs. OBJECTIVES: This study aimed to test methylphenidate and atomoxetine effects on functional connectivity during working memory in boys with ADHD. METHODS: We tested comparative effects of methylphenidate and atomoxetine on functional connectivity during the n-back task in 19 medication-naïve boys with ADHD (10-15 years old) relative to placebo and assessed potential normalisation effects of brain dysfunctions under placebo relative to 20 age-matched neurotypical boys. Patients were scanned in a randomised, double-blind, cross-over design under single doses of methylphenidate, atomoxetine, and placebo. Controls were scanned once, unmedicated. RESULTS: Patients under placebo showed abnormally increased connectivity between right superior parietal gyrus (rSPG) and left central operculum/insula. This hyperconnectivity was not observed when patients were under methylphenidate or atomoxetine. Furthermore, under methylphenidate, patients showed increased connectivity relative to controls between right middle frontal gyrus (rMFG) and cingulo-temporo-parietal and striato-thalamic regions, and between rSPG and cingulo-parietal areas. Interrogating these networks within patients revealed increased connectivity between both rMFG and rSPG and right supramarginal gyrus under methylphenidate relative to placebo. Nonetheless, no differences across drug conditions were observed within patients at whole brain level. No drug effects on performance were observed. CONCLUSIONS: This study shows shared modulating effects of methylphenidate and atomoxetine on parieto-insular connectivity but exclusive effects of methylphenidate on connectivity increases in fronto-temporo-parietal and fronto-striato-thalamic networks in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Central Nervous System Stimulants , Methylphenidate , Male , Humans , Child , Adolescent , Methylphenidate/pharmacology , Methylphenidate/therapeutic use , Attention Deficit Disorder with Hyperactivity/drug therapy , Atomoxetine Hydrochloride/pharmacology , Atomoxetine Hydrochloride/therapeutic use , Brain , Frontal Lobe , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/therapeutic use , Magnetic Resonance Imaging
5.
Hum Brain Mapp ; 44(5): 1901-1912, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36546653

ABSTRACT

The identification of meaningful functional magnetic resonance imaging (fMRI) biomarkers requires measures that reliably capture brain performance across different subjects and over multiple scanning sessions. Recent developments in fMRI acquisition, such as the introduction of multiband (MB) protocols and in-plane acceleration, allow for increased scanning speed and improved temporal resolution. However, they may also lead to reduced temporal signal to noise ratio and increased signal leakage between simultaneously excited slices. These methods have been adopted in several scanning modalities including diffusion weighted imaging and fMRI. To our knowledge, no study has formally compared the reliability of the same resting-state fMRI (rs-fMRI) metrics (amplitude of low-frequency fluctuations; seed-to-voxel and region of interest [ROI]-to-ROI connectivity) across conventional single-band fMRI and different MB acquisitions, with and without in-plane acceleration, across three sessions. In this study, 24 healthy older adults were scanned over three visits, on weeks 0, 1, and 4, and, on each occasion, underwent a conventional single band rs-fMRI scan and three different rs-fMRI scans with MB factors 4 and 6, with and without in-plane acceleration. Across all three rs-fMRI metrics, the reliability scores were highest with MB factor 4 with no in-plane acceleration for cortical areas and with conventional single band for subcortical areas. Recommendations for future research studies are discussed.


Subject(s)
Brain Mapping , Healthy Aging , Humans , Aged , Brain Mapping/methods , Reproducibility of Results , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods
6.
Learn Environ Res ; 26(1): 145-159, 2023.
Article in English | MEDLINE | ID: mdl-35399562

ABSTRACT

In 2020, King's College London introduced HyFlex teaching as a means to supplement online and face-to-face teaching and to respond to Covid-19 restrictions. This enabled teaching to a mixed cohort of students (both online and on campus). This article provides an outline of how such an approach was conceptualized and implemented in a higher-education institution during an intense three-month period over that summer and prior to the limited re-opening of the university campus. This was a new approach that offers a number of pointers for reflection and provides key insights in on this novel learning environment and the physical and pedagogical contexts in which learning can occur. Technical implementation factors are detailed, along with both reflections on challenges and solutions. Pedagogical issues such as cognitive load, social presence, and resolving the issues of a cohort spread across two locations are discussed. While we should be mindful of the limitations of this relatively-specific research, and shouldn't therefore over-extrapolate our findings, one key finding is that delivering Hyflex is associated with a higher cognitive load. Further, the audio quality of our implementation enhanced the feeling of presence in the learning environment. We recommend providing appropriate technical and pedagogical training, as well as audio-visual and digital education support.

7.
Psychol Med ; 53(7): 2831-2841, 2023 May.
Article in English | MEDLINE | ID: mdl-34852855

ABSTRACT

BACKGROUND: Overgeneralised self-blame and worthlessness are key symptoms of major depressive disorder (MDD) and have previously been associated with self-blame-selective changes in connectivity between right superior anterior temporal lobe (rSATL) and subgenual frontal cortices. Another study showed that remitted MDD patients were able to modulate this neural signature using functional magnetic resonance imaging (fMRI) neurofeedback training, thereby increasing their self-esteem. The feasibility and potential of using this approach in symptomatic MDD were unknown. METHOD: This single-blind pre-registered randomised controlled pilot trial probed a novel self-guided psychological intervention with and without additional rSATL-posterior subgenual cortex (BA25) fMRI neurofeedback, targeting self-blaming emotions in people with insufficiently recovered MDD and early treatment-resistance (n = 43, n = 35 completers). Participants completed three weekly self-guided sessions to rebalance self-blaming biases. RESULTS: As predicted, neurofeedback led to a training-induced reduction in rSATL-BA25 connectivity for self-blame v. other-blame. Both interventions were safe and resulted in a 46% reduction on the Beck Depression Inventory-II, our primary outcome, with no group differences. Secondary analyses, however, revealed that patients without DSM-5-defined anxious distress showed a superior response to neurofeedback compared with the psychological intervention, and the opposite pattern in anxious MDD. As predicted, symptom remission was associated with increases in self-esteem and this correlated with the frequency with which participants employed the psychological strategies in daily life. CONCLUSIONS: These findings suggest that self-blame-rebalance neurofeedback may be superior over a solely psychological intervention in non-anxious MDD, although further confirmatory studies are needed. Simple self-guided strategies tackling self-blame were beneficial, but need to be compared against treatment-as-usual in further trials. https://doi.org/10.1186/ISRCTN10526888.


Subject(s)
Depressive Disorder, Major , Neurofeedback , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Depressive Disorder, Major/pathology , Pilot Projects , Neurofeedback/methods , Depression , Magnetic Resonance Imaging , Single-Blind Method
8.
Front Hum Neurosci ; 16: 980280, 2022.
Article in English | MEDLINE | ID: mdl-36438643

ABSTRACT

Leading Eigenvector Dynamics Analysis (LEiDA) is an analytic approach that characterizes brain activity recorded with functional Magnetic Resonance Imaging (fMRI) as a succession of discrete phase-locking patterns, or states, that consistently recur over time across all participants. LEiDA allows for the extraction of three state-related measures which have previously been key to gaining a better understanding of brain dynamics in both healthy and clinical populations: the probability of occurrence of a given state, its lifetime and the probability of switching from one state to another. The degree to which test-retest reliability of the LEiDA measures may be affected by increasing MRI multiband (MB) factors in comparison with single band sequences is yet to be established. In this study, 24 healthy older adults were scanned over three sessions, on weeks 0, 1, and 4. On each visit, they underwent a conventional single band resting-state fMRI (rs-fMRI) scan and three different MB rs-fMRI scans, with MB factors of 4, with and without in-plane acceleration, and 6 without in-plane acceleration. We found test-retest reliability scores to be significantly higher with MB factor 4 with and without in-plane acceleration for most cortical networks. These findings will inform the choice of acquisition parameters for future studies and clinical trials.

9.
Am J Psychiatry ; 179(12): 947-958, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36349428

ABSTRACT

OBJECTIVE: Functional MRI neurofeedback (fMRI-NF) could potentially be a novel, safe nonpharmacological treatment for attention deficit hyperactivity disorder (ADHD). A proof-of-concept randomized controlled trial of fMRI-NF of the right inferior frontal cortex (rIFC), compared to an active control condition, showed promising improvement of ADHD symptoms (albeit in both groups) and in brain function. However, comparison with a placebo condition in a larger trial is required to test efficacy. METHODS: This double-blind, sham-controlled randomized controlled trial tested the effectiveness and efficacy of fMRI-NF of the rIFC on symptoms and executive functions in 88 boys with ADHD (44 each in the active and sham arms). To investigate treatment-related changes, groups were compared at the posttreatment and 6-month follow-up assessments, controlling for baseline scores, age, and medication status. The primary outcome measure was posttreatment score on the ADHD Rating Scale (ADHD-RS). RESULTS: No significant group differences were found on the ADHD-RS. Both groups showed similar decreases in other clinical and cognitive measures, except for a significantly greater decrease in irritability and improvement in motor inhibition in sham relative to active fMRI-NF at the posttreatment assessment, covarying for baseline. There were no significant side effects or adverse events. The active relative to the sham fMRI-NF group showed enhanced activation in rIFC and other frontal and temporo-occipital-cerebellar self-regulation areas. However, there was no progressive rIFC upregulation, correlation with ADHD-RS scores, or transfer of learning. CONCLUSIONS: Contrary to the hypothesis, the study findings do not suggest that fMRI-NF of the rIFC is effective in improving clinical symptoms or cognition in boys with ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Neurofeedback , Child , Male , Humans , Attention Deficit Disorder with Hyperactivity/therapy , Attention Deficit Disorder with Hyperactivity/drug therapy , Magnetic Resonance Imaging , Treatment Outcome , Double-Blind Method , Cognition
10.
Sci Rep ; 12(1): 12005, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835813

ABSTRACT

The multicontrast EPImix sequence generates six contrasts, including a T1-weighted scan, in ~1 min. EPImix shows comparable diagnostic performance to conventional scans under qualitative clinical evaluation, and similarities in simple quantitative measures including contrast intensity. However, EPImix scans have not yet been compared to standard MRI scans using established quantitative measures. In this study, we compared conventional and EPImix-derived T1-weighted scans of 64 healthy participants using tissue volume estimates and predicted brain-age. All scans were pre-processed using the SPM12 DARTEL pipeline, generating measures of grey matter, white matter and cerebrospinal fluid volume. Brain-age was predicted using brainageR, a Gaussian Processes Regression model previously trained on a large sample of standard T1-weighted scans. Estimates of both global and voxel-wise tissue volume showed significantly similar results between standard and EPImix-derived T1-weighted scans. Brain-age estimates from both sequences were significantly correlated, although EPImix T1-weighted scans showed a systematic offset in predictions of chronological age. Supplementary analyses suggest that this is likely caused by the reduced field of view of EPImix scans, and the use of a brain-age model trained using conventional T1-weighted scans. However, this systematic error can be corrected using additional regression of T1-predicted brain-age onto EPImix-predicted brain-age. Finally, retest EPImix scans acquired for 10 participants demonstrated high test-retest reliability in all evaluated quantitative measurements. Quantitative analysis of EPImix scans has potential to reduce scanning time, increasing participant comfort and reducing cost, as well as to support automation of scanning, utilising active learning for faster and individually-tailored (neuro)imaging.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Reproducibility of Results
11.
Hum Brain Mapp ; 43(5): 1749-1765, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34953014

ABSTRACT

Current neuroimaging acquisition and processing approaches tend to be optimised for quality rather than speed. However, rapid acquisition and processing of neuroimaging data can lead to novel neuroimaging paradigms, such as adaptive acquisition, where rapidly processed data is used to inform subsequent image acquisition steps. Here we first evaluate the impact of several processing steps on the processing time and quality of registration of manually labelled T1 -weighted MRI scans. Subsequently, we apply the selected rapid processing pipeline both to rapidly acquired multicontrast EPImix scans of 95 participants (which include T1 -FLAIR, T2 , T2 *, T2 -FLAIR, DWI and ADC contrasts, acquired in ~1 min), as well as to slower, more standard single-contrast T1 -weighted scans of a subset of 66 participants. We quantify the correspondence between EPImix T1 -FLAIR and single-contrast T1 -weighted scans, using correlations between voxels and regions of interest across participants, measures of within- and between-participant identifiability as well as regional structural covariance networks. Furthermore, we explore the use of EPImix for the rapid construction of morphometric similarity networks. Finally, we quantify the reliability of EPImix-derived data using test-retest scans of 10 participants. Our results demonstrate that quantitative information can be derived from a neuroimaging scan acquired and processed within minutes, which could further be used to implement adaptive multimodal imaging and tailor neuroimaging examinations to individual patients.


Subject(s)
Brain , Neuroimaging , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Multimodal Imaging , Neuroimaging/methods , Reproducibility of Results
12.
Brain Sci ; 11(9)2021 Sep 19.
Article in English | MEDLINE | ID: mdl-34573260

ABSTRACT

High doses of delta-9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, have been shown to have anxiogenic effects. Additionally, THC effects have been shown to be modulated by genotype, including the single nucleotide polymorphism (SNP) rs1130233 at the protein kinase AKT1 gene, a key component of the dopamine signalling cascade. As such, it is likely that epigenetic methylation around this SNP may affect AKT gene expression, which may in turn impact on the acute effects of THC on brain function. We investigated the genetic (AKT1 rs1130233) and epigenetic modulation of brain function during fear processing in a 2-session, double-blind, cross-over, randomized placebo-controlled THC administration, in 36 healthy males. Fear processing was assessed using an emotion (fear processing) paradigm, under functional magnetic resonance imaging (fMRI). Complete genetic and fMRI data were available for 34 participants. THC caused an increase in anxiety and transient psychotomimetic symptoms and para-hippocampal gyrus/amygdala activation. Number of A alleles at the AKT1 rs1130233 SNP, and percentage methylation at the CpG11-12 site, were independently associated with a greater effect of THC on activation in a network of brain regions including left and right parahippocampal gyri, respectively. AKT1 rs1130233 moderation of the THC effect on left parahippocampal activation persisted after covarying for methylation percentage, and was partially mediated in sections of the left parahippocampal gyrus/hippocampus by methylation percentage. These results may offer an example of how genetic and epigenetic variations influence the psychotomimetic and neurofunctional effects of THC.

13.
Front Psychol ; 12: 650314, 2021.
Article in English | MEDLINE | ID: mdl-33995207

ABSTRACT

A worldwidemental health crisis is expected, as millions worldwide fear death and disease while being forced into repeated isolation. Thus, there is a need for new proactive approaches to improve mental resilience and prevent mental health conditions. Since the 1990s, art has emerged as an alternative mental health therapy in the United States and Europe, becoming part of the social care agenda. This article focuses on how visual esthetic experiences can create similar patterns of neuronal activity as those observed when the reward system is activated. The activation of the reward structures could have a stress buffering effect, given the interdependence observed between the reward and stress systems. Therefore, could visual esthetic experiences stimulate mental resilience? And if this were the case, could art-based interventions be offered for mental health in the context of COVID-19 and beyond?

14.
J Psychopharmacol ; 35(7): 814-822, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33860709

ABSTRACT

BACKGROUND: Emerging evidence supports the antipsychotic effect of cannabidiol, a non-intoxicating component of cannabis, in people with psychosis. Preclinical findings suggest that this antipsychotic effect may be related to cannabidiol modulating glutamatergic signalling in the brain. AIM: The purpose of this study was to investigate the effects of cannabidiol on the neurochemical mechanisms underlying psychosis. METHODS: We investigated the effects of a single oral dose of cannabidiol (600 mg) in patients with psychosis, using a double-blind, randomised, placebo-controlled, repeated-measures, within-subject cross-over design. After drug administration, 13 patients were scanned using proton magnetic resonance spectroscopy to measure left hippocampal glutamate levels. Symptom severity was rated using the Positive and Negative Syndrome Scale 60 min before drug administration (pre-scan), and 270 min after drug administration (post-scan). Effects of cannabidiol on hippocampal glutamate levels, symptom severity, and correlations between hippocampal glutamate and symptoms were investigated. RESULTS: Compared to placebo, there was a significant increase in hippocampal glutamate (p=0.035), and a significantly greater decrease in symptom severity (p=0.032) in the psychosis patients under cannabidiol treatment. There was also a significant negative relationship between post-treatment total Positive and Negative Syndrome Scale score and hippocampal glutamate (p=0.047), when baseline Positive and Negative Syndrome Scale score, treatment (cannabidiol vs placebo), and interaction between treatment and glutamate levels were controlled for. CONCLUSIONS: These findings may suggest a link between the increase in glutamate levels and concomitant decrease in symptom severity under cannabidiol treatment observed in psychosis patients. Furthermore, the findings provide novel insight into the potential neurochemical mechanisms underlying the antipsychotic effects of cannabidiol.


Subject(s)
Antipsychotic Agents/pharmacology , Cannabidiol/pharmacology , Glutamic Acid/drug effects , Hippocampus/drug effects , Psychotic Disorders/drug therapy , Schizophrenia/drug therapy , Adult , Antipsychotic Agents/administration & dosage , Cannabidiol/administration & dosage , Female , Glutamic Acid/metabolism , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Male , Outcome Assessment, Health Care , Proton Magnetic Resonance Spectroscopy , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/metabolism , Schizophrenia/diagnostic imaging , Schizophrenia/metabolism , Severity of Illness Index , Young Adult
15.
Mol Autism ; 12(1): 14, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608048

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is associated with deficits in executive functioning (EF), and these have been suggested to contribute to core as well as co-occurring psychiatric symptoms. The biological basis of these deficits is unknown but may include the serotonergic system, which is involved both in regulating EF in neurotypical populations and in the pathophysiology of ASD. We previously demonstrated that reducing serotonin by acute tryptophan depletion (ATD) shifts differences in brain function during performance of EF tasks towards control levels. However, ATD cannot be easily used in the clinic, and we therefore need to adopt alternative approaches to challenge the serotonin system. Hence, we investigated the role of the serotonergic modulator tianeptine on EF networks in ASD. METHOD: We conducted a pharmacological magnetic resonance imaging study, using a randomized double-blind crossover design, to compare the effect of an acute dosage of 12.5 mg tianeptine and placebo on brain activation during two EF tasks (of response inhibition and sustained attention) in 38 adult males: 19 with ASD and 19 matched controls. RESULTS: Under placebo, compared to controls, individuals with ASD had atypical brain activation in response inhibition regions including the inferior frontal cortex, premotor regions and cerebellum. During sustained attention, individuals with ASD had decreased brain activation in the right middle temporal cortex, right cuneus and left precuneus. Most of the case-control differences in brain function observed under placebo conditions were abolished by tianeptine administration. Also, within ASD individuals, brain functional differences were shifted significantly towards control levels during response inhibition in the inferior frontal and premotor cortices. LIMITATIONS: We conducted a pilot study using a single dose of tianeptine, and therefore, we cannot comment on long-term outcome. CONCLUSIONS: Our findings provide the first evidence that tianeptine can shift atypical brain activation during EF in adults with ASD towards control levels. Future studies should investigate whether this shift in the biology of ASD is maintained after prolonged treatment with tianeptine and whether it improves clinical symptoms.


Subject(s)
Antidepressive Agents, Tricyclic/therapeutic use , Autistic Disorder/drug therapy , Brain/diagnostic imaging , Executive Function/drug effects , Thiazepines/therapeutic use , Adult , Attention/drug effects , Autistic Disorder/diagnostic imaging , Autistic Disorder/physiopathology , Autistic Disorder/psychology , Brain/physiopathology , Cross-Over Studies , Double-Blind Method , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pilot Projects , Young Adult
16.
Psychol Med ; 51(4): 596-606, 2021 03.
Article in English | MEDLINE | ID: mdl-31994476

ABSTRACT

BACKGROUND: Recent evidence suggests that cannabidiol (CBD), a non-intoxicating ingredient present in cannabis extract, has an antipsychotic effect in people with established psychosis. However, the effect of CBD on the neurocognitive mechanisms underlying psychosis is unknown. METHODS: Patients with established psychosis on standard antipsychotic treatment were studied on separate days at least one week apart, to investigate the effects of a single dose of orally administered CBD (600 mg) compared to a matched placebo (PLB), using a double-blind, randomized, PLB-controlled, repeated-measures, within-subject cross-over design. Three hours after taking the study drug participants were scanned using a block design functional magnetic resonance imaging (fMRI) paradigm, while performing a verbal paired associate learning task. Fifteen psychosis patients completed both study days, 13 completed both scanning sessions. Nineteen healthy controls (HC) were also scanned using the same fMRI paradigm under identical conditions, but without any drug administration. Effects of CBD on brain activation measured using the blood oxygen level-dependent hemodynamic response fMRI signal were studied in the mediotemporal, prefrontal, and striatal regions of interest. RESULTS: Compared to HC, psychosis patients under PLB had altered prefrontal activation during verbal encoding, as well as altered mediotemporal and prefrontal activation and greater mediotemporal-striatal functional connectivity during verbal recall. CBD attenuated dysfunction in these regions such that activation under its influence was intermediate between the PLB condition and HC. CBD also attenuated hippocampal-striatal functional connectivity and caused trend-level symptom reduction in psychosis patients. CONCLUSIONS: This suggests that normalization of mediotemporal and prefrontal dysfunction and mediotemporal-striatal functional connectivity may underlie the antipsychotic effects of CBD.


Subject(s)
Antipsychotic Agents/pharmacology , Cannabidiol/pharmacology , Prefrontal Cortex/drug effects , Psychotic Disorders/physiopathology , Adult , Attention/drug effects , Brain/drug effects , Corpus Striatum/drug effects , Double-Blind Method , Female , Hippocampus/drug effects , Humans , Magnetic Resonance Imaging , Male , Mental Recall/drug effects , Young Adult
17.
Psychopharmacology (Berl) ; 238(5): 1315-1331, 2021 May.
Article in English | MEDLINE | ID: mdl-31814047

ABSTRACT

RATIONALE: Prolonged use of cannabis, the most widely used illicit drug worldwide, has been consistently associated with impairment in memory and verbal learning. Although the neurophysiological underpinnings of these impairments have been investigated previously using functional magnetic resonance imaging (fMRI), while performing memory tasks, the results of these studies have been inconsistent and no clear picture has emerged yet. Furthermore, no previous studies have investigated trial-by-trial learning. OBJECTIVES: We aimed to investigate the neural underpinnings of impaired verbal learning in cannabis users as estimated over repeated learning trials. METHODS: We studied 21 adolescent-onset regular cannabis users and 21 non-users using fMRI performed at least 12 h after last cannabis use, while they performed a paired associate verbal learning task that allowed us to examine trial-by-trial learning. Brain activation during repeated verbal encoding and recall conditions of the task was indexed using the blood oxygen level-dependent haemodynamic response fMRI signal. RESULTS: There was a significant improvement in recall score over repeated trials indicating learning occurring across the two groups of participants. However, learning was significantly slower in cannabis users compared to non-users (p = 0.032, partial eta-squared = 0.108). While learning verbal stimuli over repeated encoding blocks, non-users displayed progressive increase in recruitment of the midbrain, parahippocampal gyrus and thalamus (p = 0.00939, partial eta-squared = 0.180). In contrast, cannabis users displayed a greater but disrupted activation pattern in these regions, which showed a stronger correlation with new word-pairs learnt over the same blocks in cannabis users than in non-users. CONCLUSIONS: These results suggest that disrupted medial temporal and midbrain function underlie slower learning in adolescent-onset cannabis users.


Subject(s)
Magnetic Resonance Imaging/methods , Marijuana Smoking/psychology , Verbal Learning/physiology , Adolescent , Adult , Female , Humans , Learning/physiology , Male , Memory/physiology , Mental Recall/physiology , Mesencephalon/physiopathology , Parahippocampal Gyrus/physiopathology , Young Adult
18.
Front Psychiatry ; 11: 859, 2020.
Article in English | MEDLINE | ID: mdl-33005157

ABSTRACT

Cannabis use during the critical neurodevelopmental period of adolescence, may lead to brain structural, functional, and histological alterations that may underpin some of the longer-term behavioral and psychological harms associated with it. The endocannabinoid system performs a key regulatory and homeostatic role, that undergoes developmental changes during adolescence making it potentially more susceptible to the effects of exposure to cannabis during adolescence. Here, we synthesize evidence from human studies of adolescent cannabis users showing alterations in cognitive performance as well as in brain structure and function with relevant preclinical evidence to summarize the current state of knowledge. We also focus on the limited evidence that speaks to the hypothesis that cannabis use during adolescence, may pose a greater risk than use during adulthood, identify gaps in current evidence and suggest directions for new research. Existing literature is consistent with the association of cannabis use during adolescence and neurological changes. Adolescence cannabis users show altered functional connectivity within known functional circuits, that may underlie inefficient recruitment of brain regions, as largely increased functional activation has been observed compared to controls. This disruption in some cases may contribute to the development of adverse mental health conditions; increasing the chances or accelerating the onset, of their development. Preclinical evidence, further supports disruption from cannabis use being specific to the developmental period. Future studies are required to better investigate adolescent cannabis use with more accuracy using better defined groups or longitudinal studies and examine the permanency of these changes following caseation of use. Furthermore, research is required to identify heritable risk factors to cannabis use. There is a need for caution when considering the therapeutic potential of cannabis for adolescence and particularly in public discourse leading to potential trivialization of possible harm from cannabis use in adolescence. Current evidence indicates that adolescence is a sensitive period during which cannabis use may result in adverse neurocognitive effects that appear to show a level of permanency into adulthood.

19.
Neuroimage Clin ; 27: 102291, 2020.
Article in English | MEDLINE | ID: mdl-32526685

ABSTRACT

Functional Magnetic Resonance Imaging Neurofeedback (fMRI-NF) targeting brain areas/networks shown to be dysfunctional by previous fMRI research is a promising novel neurotherapy for ADHD. Our pioneering study in 31 adolescents with ADHD showed that fMRI-NF of the right inferior frontal cortex (rIFC) and of the left parahippocampal gyrus (lPHG) was associated with clinical improvements. Previous studies using electro-encephalography-NF have shown, however, that not all ADHD patients learn to self-regulate, and the predictors of fMRI-NF self-regulation learning are not presently known. The aim of the current study was therefore to elucidate the potential predictors of fMRI-NF learning by investigating the relationship between fMRI-NF learning and baseline inhibitory brain function during an fMRI stop task, along with clinical and cognitive measures. fMRI-NF learning capacity was calculated for each participant by correlating the number of completed fMRI-NF runs with brain activation in their respective target regions from each run (rIFC or lPHG); higher correlation values were taken as a marker of better (linear) fMRI-NF learning. Linear correlations were then conducted between baseline measures and the participants' capacity for fMRI-NF learning. Better fMRI-NF learning was related to increased activation in left inferior fronto-striatal regions during the fMRI stop task. Poorer self-regulation during fMRI-NF training was associated with enhanced activation in posterior temporo-occipital and cerebellar regions. Cognitive and clinical measures were not associated with general fMRI-NF learning across all participants. A categorical analysis showed that 48% of adolescents with ADHD successfully learned fMRI-NF and this was also not associated with any baseline clinical or cognitive measures except that faster processing speed during inhibition and attention tasks predicted learning. Taken together, the findings suggest that imaging data are more predictive of fMRI-NF self-regulation skills in ADHD than behavioural data. Stronger baseline activation in fronto-striatal cognitive control regions predicts better fMRI-NF learning in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/physiopathology , Brain/pathology , Brain/physiopathology , Learning/physiology , Adolescent , Attention/physiology , Attention Deficit Disorder with Hyperactivity/pathology , Brain Mapping/methods , Child , Humans , Inhibition, Psychological , Magnetic Resonance Imaging/methods , Male , Neurofeedback/methods , Neuropsychological Tests
20.
Neuropsychopharmacology ; 45(13): 2248-2256, 2020 12.
Article in English | MEDLINE | ID: mdl-32388538

ABSTRACT

Emotion processing-including signals from facial expressions-is often altered in individuals with autism spectrum disorder (ASD). The biological basis of this is poorly understood but may include neurochemically mediated differences in the responsivity of key 'limbic' regions (including amygdala, ventromedial prefrontal cortex (vmPFC) and nucleus accumbens (NAc)). Emerging evidence also suggests that ASD may be a disorder of brain temporal dynamics. Moreover, serotonin (5-HT) has been shown to be a key regulator of both facial-emotion processing and brain dynamics, and 5-HT abnormalities have been consistently implicated in ASD. To date, however, no one has examined how 5-HT influences the dynamics of facial-emotion processing in ASD. Therefore, we compared the influence of 5-HT on the responsivity of brain dynamics during facial-emotion processing in individuals with and without ASD. Participants completed a facial-emotion processing fMRI task at least 8 days apart using a randomised double-blind crossover design. At each visit they received either a single 20-mg oral dose of the selective serotonin reuptake inhibitor (SSRI) citalopram or placebo. We found that citalopram (which increases levels of 5-HT) caused sustained activation in key limbic regions during processing of negative facial emotions in adults with ASD-but not in neurotypical adults. The neurotypical adults' limbic response reverted more rapidly to baseline following a 5-HT-challenge. Our results suggest that serotonergic homoeostatic control of the temporal dynamics in limbic regions is altered in adults with ASD, and provide a fresh perspective on the biology of ASD.


Subject(s)
Autism Spectrum Disorder , Serotonin , Adult , Autism Spectrum Disorder/drug therapy , Cross-Over Studies , Emotions , Facial Expression , Humans , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...