Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39229110

ABSTRACT

Desmosomes are intercellular junctions that mediate cell-cell adhesion and are essential for maintaining tissue integrity. Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease caused by autoantibodies (IgG) targeting desmoglein 3 (Dsg3), a desmosomal cadherin. PV autoantibodies cause desmosome disassembly and loss of cell-cell adhesion, but the molecular signaling pathways that regulate these processes are not fully understood. Using high-resolution time-lapse imaging of live keratinocytes, we found that ER tubules make frequent and persistent contacts with internalizing Dsg3 puncta in keratinocytes treated with PV patient IgG. Biochemical experiments demonstrated that PV IgG activated ER stress signaling pathways, including both IRE1⍺ and PERK pathways, in cultured keratinocytes. Further, ER stress transcripts were upregulated in PV patient skin. Pharmacological inhibition of ER stress protected against PV IgG-induced desmosome disruption and loss of keratinocyte cell-cell adhesion, suggesting that ER stress may be an important pathomechanism and therapeutically targetable pathway for PV treatment. These data support a model in which desmosome adhesion is integrated with ER function to serve as a cell adhesion stress sensor that is activated in blistering skin disease.

2.
HIV Med ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39252604

ABSTRACT

BACKGROUND: People with HIV might be at an increased risk of long COVID (LC) because of their immune dysfunction and chronic inflammation and alterations in immunological responses against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; coronavirus disease 2019 [COVID-19]). This systematic review aimed to evaluate the association between HIV infection and LC and the prevalence and characteristics of and risk factors for LC among people with HIV. METHODS: Multiple databases, including Embase, PubMed, PsycINFO, Web of Science, and Sociological Abstracts, were searched to identify articles published before June 2023. Published articles were included if they presented at least one LC outcome measure among people with HIV and used quantitative or mixed-methods study designs. For effects reported in three or more studies, meta-analyses using random-effects models were performed using R software. RESULTS: We pooled 39 405 people with HIV and COVID-19 in 17 eligible studies out of 6158 publications in all the databases. It was estimated that 52% of people with HIV with SARS-CoV-2 infection developed at least one LC symptom. Results from the random-effects model showed that HIV infection was associated with an increased risk of LC (odds ratio 2.20; 95% confidence interval 1.25-3.86). The most common LC symptoms among people with HIV were cough, fatigue, and asthenia. Risk factors associated with LC among people with HIV included a history of moderate-severe COVID-19 illness, increased interferon-gamma-induced protein 10 or tumour necrosis factor-α, and decreased interferon-ß, among others. CONCLUSIONS: The COVID-19 pandemic continues to exacerbate health inequities among people with HIV because of their higher risk of developing LC. Our review is informative for public health and clinical communities to develop tailored strategies to prevent aggravated LC among people with HIV.

3.
PLoS One ; 19(5): e0290485, 2024.
Article in English | MEDLINE | ID: mdl-38722959

ABSTRACT

Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.


Subject(s)
Cadherins , Proteolysis , Ubiquitin-Protein Ligases , Humans , Adherens Junctions/metabolism , Antigens, CD/metabolism , Antigens, CD/genetics , Cadherins/metabolism , Cell Adhesion , HEK293 Cells , Membrane Proteins/genetics , Membrane Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
4.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712246

ABSTRACT

Cholesterol- and sphingolipid-enriched domains called lipid rafts are hypothesized to selectively coordinate protein complex assembly within the plasma membrane to regulate cellular functions. Desmosomes are mechanically resilient adhesive junctions that associate with lipid raft membrane domains, yet the mechanisms directing raft association of the desmosomal proteins, particularly the transmembrane desmosomal cadherins, are poorly understood. We identified the desmoglein-1 (DSG1) transmembrane domain (TMD) as a key determinant of desmoglein lipid raft association and designed a panel of DSG1 TMD variants to assess the contribution of TMD physicochemical properties (length, bulkiness, and palmitoylation) to DSG1 lipid raft association. Sucrose gradient fractionations revealed that TMD length and bulkiness, but not palmitoylation, govern DSG1 lipid raft association. Further, DSG1 raft association determines plakoglobin recruitment to raft domains. Super-resolution imaging and functional assays uncovered a strong relationship between the efficiency of DSG1 TMD lipid raft association and the formation of morphologically and functionally robust desmosomes. Lipid raft association regulated both desmosome assembly dynamics and DSG1 cell surface stability, indicating that DSG1 lipid raft association is required for both desmosome formation and maintenance. These studies identify the biophysical properties of desmoglein transmembrane domains as key determinants of lipid raft association and desmosome adhesive function.

6.
bioRxiv ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37609155

ABSTRACT

Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.

7.
Nat Cell Biol ; 25(6): 823-835, 2023 06.
Article in English | MEDLINE | ID: mdl-37291267

ABSTRACT

The endoplasmic reticulum (ER) forms a dynamic network that contacts other cellular membranes to regulate stress responses, calcium signalling and lipid transfer. Here, using high-resolution volume electron microscopy, we find that the ER forms a previously unknown association with keratin intermediate filaments and desmosomal cell-cell junctions. Peripheral ER assembles into mirror image-like arrangements at desmosomes and exhibits nanometre proximity to keratin filaments and the desmosome cytoplasmic plaque. ER tubules exhibit stable associations with desmosomes, and perturbation of desmosomes or keratin filaments alters ER organization, mobility and expression of ER stress transcripts. These findings indicate that desmosomes and the keratin cytoskeleton regulate the distribution, function and dynamics of the ER network. Overall, this study reveals a previously unknown subcellular architecture defined by the structural integration of ER tubules with an epithelial intercellular junction.


Subject(s)
Cytoskeleton , Desmosomes , Desmosomes/chemistry , Desmosomes/metabolism , Desmosomes/ultrastructure , Cytoskeleton/metabolism , Keratins/metabolism , Intermediate Filaments/metabolism , Intermediate Filaments/ultrastructure , Endoplasmic Reticulum/metabolism
8.
Commun Biol ; 4(1): 142, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514834

ABSTRACT

The genetic and metabolic heterogeneity of RAS-driven cancers has confounded therapeutic strategies in the clinic. To address this, rapid and genetically tractable animal models are needed that recapitulate the heterogeneity of RAS-driven cancers in vivo. Here, we generate a Drosophila melanogaster model of Ras/Lkb1 mutant carcinoma. We show that low-level expression of oncogenic Ras (RasLow) promotes the survival of Lkb1 mutant tissue, but results in autonomous cell cycle arrest and non-autonomous overgrowth of wild-type tissue. In contrast, high-level expression of oncogenic Ras (RasHigh) transforms Lkb1 mutant tissue resulting in lethal malignant tumors. Using simultaneous multiview light-sheet microcopy, we have characterized invasion phenotypes of Ras/Lkb1 tumors in living larvae. Our molecular analysis reveals sustained activation of the AMPK pathway in malignant Ras/Lkb1 tumors, and demonstrate the genetic and pharmacologic dependence of these tumors on CaMK-activated Ampk. We further show that LKB1 mutant human lung adenocarcinoma patients with high levels of oncogenic KRAS exhibit worse overall survival and increased AMPK activation. Our results suggest that high levels of oncogenic KRAS is a driving event in the malignant transformation of LKB1 mutant tissue, and uncovers a vulnerability that may be used to target this aggressive genetic subset of RAS-driven tumors.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genes, ras , Mutation , Neoplasms, Experimental/genetics , Protein Kinases/genetics , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/metabolism , Adenocarcinoma of Lung/enzymology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/mortality , Animals , Animals, Genetically Modified , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cell Death , Cell Movement , Databases, Genetic , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/enzymology , Enzyme Activation , Genetic Predisposition to Disease , Humans , Larva/enzymology , Larva/genetics , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Neoplasm Invasiveness , Neoplasms, Experimental/enzymology , Phenotype , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins p21(ras)/genetics
9.
J Cell Biol ; 219(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32232465

ABSTRACT

Tissue morphogenesis requires dynamic intercellular contacts that are subsequently stabilized as tissues mature. The mechanisms governing these competing adhesive properties are not fully understood. Using gain- and loss-of-function approaches, we tested the role of p120-catenin (p120) and VE-cadherin (VE-cad) endocytosis in vascular development using mouse mutants that exhibit increased (VE-cadGGG/GGG) or decreased (VE-cadDEE/DEE) internalization. VE-cadGGG/GGG mutant mice exhibited reduced VE-cad-p120 binding, reduced VE-cad levels, microvascular hemorrhaging, and decreased survival. By contrast, VE-cadDEE/DEE mutants exhibited normal vascular permeability but displayed microvascular patterning defects. Interestingly, VE-cadDEE/DEE mutant mice did not require endothelial p120, demonstrating that p120 is dispensable in the context of a stabilized cadherin. In vitro, VE-cadDEE mutant cells displayed defects in polarization and cell migration that were rescued by uncoupling VE-cadDEE from actin. These results indicate that cadherin endocytosis coordinates cell polarity and migration cues through actin remodeling. Collectively, our results indicate that regulated cadherin endocytosis is essential for both dynamic cell movements and establishment of stable tissue architecture.


Subject(s)
Antigens, CD/genetics , Blood Vessels/growth & development , Cadherins/genetics , Catenins/genetics , Embryonic Development/genetics , Endothelium, Vascular/growth & development , Actins/genetics , Animals , Aorta/growth & development , Aorta/metabolism , Blood Vessels/metabolism , Body Patterning/genetics , Cell Movement/genetics , Cell Polarity/genetics , Embryo, Mammalian , Endocytosis/genetics , Endothelium, Vascular/metabolism , Mice , Protein Binding/genetics , Delta Catenin
10.
Protein Expr Purif ; 72(1): 113-24, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20230898

ABSTRACT

The Escherichia coli maltose binding protein (MBP) has been utilized as a translational fusion partner to improve the expression of foreign proteins made in E. coli. When located N-terminal to its cargo protein, MBP increases the solubility of intracellular proteins and improves the export of secreted proteins in bacterial systems. We initially explored whether MBP would have the same effect in the methylotrophic yeast Pichia pastoris, a popular eukaryotic host for heterologous protein expression. When MBP was fused as an N-terminal partner to several C-terminal cargo proteins expressed in this yeast, proteolysis occurred between the two peptides, and MBP reached the extracellular region unattached to its cargo. However, in two of three instances, the cargo protein reached the extracellular region as well, and its initial attachment to MBP enhanced its secretion from the cell. Extensive mutagenesis of the spacer region between MBP and its C-terminal cargo protein could not inhibit the cleavage although it did cause changes in the protease target sites in the fusion proteins, as determined by mass spectrometry. Taken together, these results suggested that an uncharacterized P. pastoris protease attacked at different locations in the region C-terminal of the MBP domain, including the spacer and cargo regions, but the MBP domain could still act to enhance the secretion of certain cargo proteins.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/genetics , Periplasmic Binding Proteins/genetics , Pichia/genetics , Recombinant Fusion Proteins/genetics , Amino Acid Sequence , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/isolation & purification , Escherichia coli Proteins/metabolism , Gene Expression , Maltose-Binding Proteins , Molecular Sequence Data , Mutagenesis , Mutagenesis, Site-Directed , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/isolation & purification , Periplasmic Binding Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism
11.
J Neurochem ; 92(5): 1150-7, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15715665

ABSTRACT

Little is known about the molecular mechanisms underlying sleep. We show the induction of key regulatory proteins in a cellular protective pathway, the unfolded protein response (UPR), following 6 h of induced wakefulness. Using C57/B6 male mice maintained on a 12:12 light/dark cycle, we examined, in cerebral cortex, the effect of different durations of prolonged wakefulness (0, 3, 6, 9 and 12 h) from the beginning of the lights-on inactivity period, on the protein expression of BiP/GRP78, a chaperone and classical UPR marker. BiP/GRP78 expression is increased with increasing durations of sleep deprivation (6, 9 and 12 h). There is no change in BiP/GRP78 levels in handling control experiments carried out during the lights-off period. PERK, the transmembrane kinase responsible for attenuating protein synthesis, which is negatively regulated by binding to BiP/GRP78, is activated by dissociation from BiP/GRP78 and by autophosphorylation. There is phosphorylation of the elongation initiation factor 2alpha and alteration in ribosomal function. These changes are first observed after 6 h of induced wakefulness. Thus, prolonging wakefulness beyond a certain duration induces the UPR indicating a physiological limit to wakefulness.


Subject(s)
Cerebral Cortex/metabolism , Gene Expression Regulation/physiology , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Protein Denaturation/physiology , Sleep Deprivation/metabolism , Animals , Blotting, Western/methods , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/chemistry , Immunoprecipitation/methods , Male , Mice , Mice, Inbred C57BL , Molecular Chaperones/chemistry , Phosphorylation , Polyribosomes/metabolism , Time Factors , Transcription Factors/metabolism , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL