Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Cancer Cell Int ; 24(1): 72, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347567

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most lethal primary brain tumor in adult, characterized by highly aggressive and infiltrative growth. The current therapeutic management of GBM includes surgical resection followed by ionizing radiations and chemotherapy. Complex and dynamic interplay between tumor cells and tumor microenvironment drives the progression and contributes to therapeutic resistance. Extracellular vesicles (EVs) play a crucial role in the intercellular communication by delivering bioactive molecules in the surrounding milieu modulating tumor microenvironment. METHODS: In this study, we isolated by ultracentrifugation EVs from GBM stem-like cell (GSC) lines and human microvascular endothelial cells (HMVECs) exposed or not to ionizing irradiation. After counting and characterization, we evaluated the effects of exposure of GSCs to EVs isolated from endothelial cells and vice versa. The RNA content of EVs isolated from GSC lines and HMVECs exposed or not to ionizing irradiation, was analyzed by RNA-Seq. Periostin (POSTN) and Filamin-B (FLNB) emerged in gene set enrichment analysis as the most interesting transcripts enriched after irradiation in endothelial cell-derived EVs and GSC-derived EVs, respectively. POSTN and FLNB expression was modulated and the effects were analyzed by in vitro assays. RESULTS: We confirmed that ionizing radiations increased EV secretion by GSCs and normal endothelial cells, affected the contents of and response to cellular secreted EVs. Particularly, GSC-derived EVs decreased radiation-induced senescence and promoted migration in HMVECs whereas, endothelial cell-derived EVs promoted tumorigenic properties and endothelial differentiation of GSCs. RNA-Seq analysis of EV content, identified FLNB and POSTN as transcripts enriched in EVs isolated after irradiation from GSCs and HMVECs, respectively. Assays performed on POSTN overexpressing GSCs confirmed the ability of POSTN to mimic the effects of endothelial cell-derived EVs on GSC migration and clonogenic abilities and transdifferentiation potential. Functional assays performed on HMVECs after silencing of FLNB supported its role as mediator of the effects of GSC-derived EVs on senescence and migration. CONCLUSION: In this study, we identified POSTN and FLNB as potential mediators of the effects of EVs on GSC and HMVEC behavior confirming that EVs play a crucial role in the intercellular communication by delivering bioactive molecules in the surrounding milieu modulating tumor microenvironment.

2.
Immunology ; 171(2): 198-211, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37884280

ABSTRACT

Glioblastoma, isocitrate dehydrogenase-wildtype (GB), is the most common and aggressive primary brain malignancy with poor outcome. Immune checkpoint inhibitors (ICIs) have been tested in GB and, despite disappointing results, the identification of a small subgroup of responders underlies the need to improve our understanding of the tumour microenvironment (TME) immunity. This study aimed to determine whether the expression of selected immune checkpoints on tissue-resident memory T cells (Trm) may predict patient outcome. We conducted a single cohort observational study. Tumour samples were collected from 45 patients with histologically confirmed GB (WHO grade 4) and processed to obtain single-cell suspensions. Patients were assessed for the correlation of Trm phenotype with overall survival (OS) or progression-free survival (PFS) using multiparametric flow cytometry and uni/multivariate analyses. Levels of Trm expressing programmed cell death protein 1 (PD1) and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) were found to be linked to clinical outcome. Low frequency of Trm expressing PD1 or TIM3 or both markers defined subgroups as independent positive prognostic factors for patient survival. On multivariate analysis, low CD8+CD103+PD1+TIM3+ Trm and Karnofsky performance status (KPS) ≥70 were confirmed to be the most predictive independent factors associated with longer OS (hazard ratios-HR [95%CI]: 0.14 [0.04-0.52] p < 0.001, 0.39 [0.16-0.96] p = 0.04, respectively). The CD8+CD103+ Trm subgroups were also age-related predictors for survival in GB.


Subject(s)
Glioblastoma , Hepatitis A Virus Cellular Receptor 2 , Humans , Programmed Cell Death 1 Receptor/metabolism , Prognosis , CD8-Positive T-Lymphocytes , Tumor Microenvironment
3.
Cell Death Dis ; 13(8): 719, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982038

ABSTRACT

Converging evidence indicates that the Fragile X Messenger Ribonucleoprotein (FMRP), which absent or mutated in Fragile X Syndrome (FXS), plays a role in many types of cancers. However, while FMRP roles in brain development and function have been extensively studied, its involvement in the biology of brain tumors remains largely unexplored. Here we show, in human glioblastoma (GBM) biopsies, that increased expression of FMRP directly correlates with a worse patient outcome. In contrast, reductions in FMRP correlate with a diminished tumor growth and proliferation of human GBM stem-like cells (GSCs) in vitro in a cell culture model and in vivo in mouse brain GSC xenografts. Consistently, increased FMRP levels promote GSC proliferation. To characterize the mechanism(s) by which FMRP regulates GSC proliferation, we performed GSC transcriptome analyses in GSCs expressing high levels of FMRP, and in these GSCs after knockdown of FMRP. We show that the WNT signalling is the most significantly enriched among the published FMRP target genes and genes involved in ASD. Consistently, we find that reductions in FMRP downregulate both the canonical WNT/ß-Catenin and the non-canonical WNT-ERK1/2 signalling pathways, reducing the stability of several key transcription factors (i.e. ß-Catenin, CREB and ETS1) previously implicated in the modulation of malignant features of glioma cells. Our findings support a key role for FMRP in GBM cancer progression, acting via regulation of WNT signalling.


Subject(s)
Brain Neoplasms , Fragile X Mental Retardation Protein/metabolism , Glioblastoma , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/pathology , Humans , Mice , Neoplastic Stem Cells/metabolism , Ribonucleoproteins , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
4.
Cancers (Basel) ; 14(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35740509

ABSTRACT

5-aminolevulinic acid (5-ALA)-induced PpIX fluorescence is used by neurosurgeons to identify the tumor cells of high-grade gliomas during operation. However, the issue of whether 5-ALA-induced PpIX fluorescence consistently stains all the tumor cells is still debated. Here, we assessed the cytoplasmatic signal of 5-ALA by fluorescence microscopy in a series of human gliomas. As tumor markers, we used antibodies against collapsin response-mediated protein 5 (CRMP5), alpha thalassemia/mental retardation syndrome X-linked (ATRX), and anti-isocitrate dehydrogenase 1 (IDH1). In grade III-IV gliomas, the signal induced by 5-ALA was detected in 32.7-75.5 percent of CRMP5-expressing tumor cells. In low-grade gliomas (WHO grade II), the CRMP5-expressing tumor cells did not fluoresce following 5-ALA. Immunofluorescence with antibodies that stain various components of the blood-brain barrier (BBB) suggested that 5-ALA does not cross the un-breached BBB, in spite of its small dimension. To conclude, 5-ALA-induced PpIX fluorescence has an established role in high-grade glioma surgery, but it has limited usefulness in surgery for low-grade glioma, especially when the BBB is preserved.

5.
Cell Rep ; 35(4): 109024, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33910005

ABSTRACT

Glioblastoma stem cells (GSCs) resist current glioblastoma (GBM) therapies. GSCs rely highly on oxidative phosphorylation (OXPHOS), whose function requires mitochondrial translation. Here we explore the therapeutic potential of targeting mitochondrial translation and report the results of high-content screening with putative blockers of mitochondrial ribosomes. We identify the bacterial antibiotic quinupristin/dalfopristin (Q/D) as an effective suppressor of GSC growth. Q/D also decreases the clonogenicity of GSCs in vitro, consequently dysregulating the cell cycle and inducing apoptosis. Cryoelectron microscopy (cryo-EM) reveals that Q/D binds to the large mitoribosomal subunit, inhibiting mitochondrial protein synthesis and functionally dysregulating OXPHOS complexes. These data suggest that targeting mitochondrial translation could be explored to therapeutically suppress GSC growth in GBM and that Q/D could potentially be repurposed for cancer treatment.


Subject(s)
Glioblastoma/genetics , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Cell Proliferation , Humans
6.
Biomed Res Int ; 2021: 8891045, 2021.
Article in English | MEDLINE | ID: mdl-33748283

ABSTRACT

The cranial window (CW) technique provides a simple and low-cost method to assess tumor angiogenesis in the brain. The CW combined with histology using selective markers for tumor and endothelial cells can allow a sensitive monitoring of novel antiangiogenesis therapies in preclinical models. The CW was established in cyclosporine immunosuppressed rats that were stereotactically grafted with fluorescent U87MG glioblastoma cells. One to 3 weeks after grafting, brain vasculature was visualized in vivo and assessed by immunofluorescence microscopy using antibodies against endothelial and smooth-muscle cells and blood brain barrier. At 1-2 weeks after grafting, the CW reliably detected the hypertrophy of venous-venous anastomoses and cortical veins. These structures increased highly significantly their pregrafting diameter. Arterialized veins and hemorrhages were seen by three weeks after grafting. Immunofluorescence microscopy showed significant branching and dilation of microvessels, particularly those surrounded by tumor cells. Mechanistically, these changes lead to loss of vascular resistance, increased venous outflow, and opening of venous-venous anastomoses on the cortical surface. Data from the present study, namely, the hypertrophy of cortical venous-venous anastomoses, microvessel branching, and dilation of the microvessels surrounded by tumor cells, indicate the power of this in vivo model for the sensitive monitoring of early tumor angiogenesis.


Subject(s)
Biological Assay , Brain Neoplasms , Brain , Cerebral Veins , Glioblastoma , Neoplasms, Experimental , Neovascularization, Pathologic , Animals , Brain/blood supply , Brain/metabolism , Brain/pathology , Brain Neoplasms/blood supply , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cerebral Veins/metabolism , Cerebral Veins/pathology , Glioblastoma/blood supply , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Male , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Rats , Rats, Wistar
7.
Int J Mol Sci ; 21(10)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443824

ABSTRACT

Glioblastoma (GBM) is the most aggressive and prevalent form of a human brain tumor in adults. Several data have demonstrated the implication of microRNAs (miRNAs) in tumorigenicity of GBM stem-like cells (GSCs). The regulatory functions of miRNAs in GSCs have emerged as potential therapeutic candidates for glioma treatment. The current study aimed at investigating the function of miR-370-3p in glioma progression, as aberrant expression of miR-370-3p, is involved in various human cancers, including glioma. Analyzing our collection of GBM samples and patient-derived GSC lines, we found the expression of miR-370-3p significantly downregulated compared to normal brain tissues and normal neural stem cells. Restoration of miR-370-3p expression in GSCs significantly decreased proliferation, migration, and clonogenic abilities of GSCs, in vitro, and tumor growth in vivo. Gene expression analysis performed on miR-370-3p transduced GSCs, identified several transcripts involved in Epithelial to Mesenchymal Transition (EMT), and Hypoxia signaling pathways. Among the genes downregulated by the restored expression of miR-370-3p, we found the EMT-inducer high-mobility group AT-hook 2 (HMGA2), the master transcriptional regulator of the adaptive response to hypoxia, Hypoxia-inducible factor (HIF)1A, and the long non-coding RNAs (lncRNAs) Nuclear Enriched Abundant Transcript (NEAT)1. NEAT1 acts as an oncogene in a series of human cancers including gliomas, where it is regulated by the Epidermal Growth Factor Receptor (EGFR) pathways, and contributes to tumor growth and invasion. Noteworthy, the expression levels of miR-370-3p and NEAT1 were inversely related in both GBM tumor specimens and GSCs, and a dual-luciferase reporter assay proved the direct binding between miR-370-3p and the lncRNAs NEAT1. Our results identify a critical role of miR-370-3p in the regulation of GBM development, indicating that miR-370-3p acts as a tumor-suppressor factor inhibiting glioma cell growth, migration and invasion by targeting the lncRNAs NEAT1, HMGA2, and HIF1A, thus, providing a potential candidate for GBM patient treatment.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , MicroRNAs/metabolism , Neural Stem Cells/metabolism , Adult , Animals , Brain Neoplasms/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , HEK293 Cells , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , Neoplastic Stem Cells/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Cells, Cultured
8.
Neuro Oncol ; 22(12): 1771-1784, 2020 12 18.
Article in English | MEDLINE | ID: mdl-32459347

ABSTRACT

BACKGROUND: Glioblastoma (GBM) stemlike cells (GSCs) are thought to be responsible for the maintenance and aggressiveness of GBM, the most common primary brain tumor in adults. This study aims at elucidating the involvement of deregulations within the imprinted delta-like homolog 1 gene‒type III iodothyronine deiodinase gene (DLK-DIO3) region on chromosome 14q32 in GBM pathogenesis. METHODS: Real-time PCR analyses were performed on GSCs and GBM tissues. Methylation analyses, gene expression, and reverse-phase protein array profiles were used to investigate the tumor suppressor function of the maternally expressed 3 gene (MEG3). RESULTS: Loss of expression of genes and noncoding RNAs within the DLK1-DIO3 region was observed in GSCs and GBM tissues compared with normal brain. This downregulation is mainly mediated by epigenetic silencing. Kaplan-Meier analysis indicated that low expression of MEG3 and MEG8 long noncoding (lnc)RNAs significantly correlated with short survival in GBM patients. MEG3 restoration impairs tumorigenic abilities of GSCs in vitro by inhibiting cell growth, migration, and colony formation and decreases in vivo tumor growth, reducing infiltrative growth. These effects were associated with modulation of genes involved in cell adhesion and epithelial-to-mesenchymal transition (EMT). CONCLUSION: In GBM, MEG3 acts as a tumor suppressor mainly regulating cell adhesion, EMT, and cell proliferation, thus providing a potential candidate for novel GBM therapies.


Subject(s)
Glioblastoma , RNA, Long Noncoding , Adult , Calcium-Binding Proteins , Cell Proliferation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Genomic Imprinting , Glioblastoma/genetics , Humans , Membrane Proteins/genetics , RNA, Long Noncoding/genetics
9.
Int J Cancer ; 144(6): 1331-1344, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30414187

ABSTRACT

Bevacizumab, a VEGF-targeting monoclonal antibody, may trigger an infiltrative growth pattern in glioblastoma. We investigated this pattern using both a human specimen and rat models. In the human specimen, a substantial fraction of infiltrating tumor cells were located along perivascular spaces in close relationship with endothelial cells. Brain xenografts of U87MG cells treated with bevacizumab were smaller than controls (p = 0.0055; Student t-test), however, bands of tumor cells spread through the brain farther than controls (p < 0.001; Student t-test). Infiltrating tumor Cells exhibited tropism for vascular structures and propensity to form tubules and niches with endothelial cells. Molecularly, bevacizumab triggered an epithelial to mesenchymal transition with over-expression of the receptor Plexin Domain Containing 1 (PLXDC1). These results were validated using brain xenografts of patient-derived glioma stem-like cells. Enforced expression of PLXDC1 in U87MG cells promoted brain infiltration along perivascular spaces. Importantly, PLXDC1 inhibition prevented perivascular infiltration and significantly increased the survival of bevacizumab-treated rats. Our study indicates that bevacizumab-induced brain infiltration is driven by vascular endothelium and depends on PLXDC1 activation of tumor cells.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Bevacizumab/pharmacology , Brain Neoplasms/drug therapy , Endothelium/drug effects , Glioblastoma/drug therapy , Neoplasm Proteins/metabolism , Receptors, Cell Surface/metabolism , Adult , Animals , Antineoplastic Agents, Immunological/therapeutic use , Bevacizumab/therapeutic use , Brain/cytology , Brain/drug effects , Brain/pathology , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Line, Tumor , Coculture Techniques , Drug Resistance, Neoplasm , Endothelial Cells , Endothelium/cytology , Endothelium/pathology , Epithelial-Mesenchymal Transition/drug effects , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Male , Neoplasm Proteins/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Nude , Receptors, Cell Surface/genetics , Survival Analysis , Treatment Outcome , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Xenograft Model Antitumor Assays
10.
Front Cell Neurosci ; 12: 385, 2018.
Article in English | MEDLINE | ID: mdl-30416427

ABSTRACT

Hippocampal dysfunction plays a central role in neurodevelopmental disorders, resulting in severe impairment of cognitive abilities, including memory and learning. On this basis, developmental studies represent an important tool both to understanding the cellular and molecular phenomena underlying early hippocampal damage and to study possible therapeutic interventions, that may modify the progression of neuronal death. Given the modulatory role played by 17ß-estradiol (E2) on hippocampal functions and its neuroprotective properties, the present study investigates the effects of pretreatment with E2 in a model of neonatal hippocampal injury obtained by trimethyltin (TMT) administration, characterized by neuronal loss in CA1 and CA3 subfields and astroglial and microglial activation. At post-natal days (P)5 and P6 animals received E2 administration (0.2 mg/kg/die i.p.) or vehicle. At P7 they received a single dose of TMT (6.5 mg/kg i.p.) and were sacrificed 72 h (P10) or 7 days after TMT treatment (P14). Our findings indicate that pretreatment with E2 exerts a protective effect against hippocampal damage induced by TMT administration early in development, reducing the extent of neuronal death in the CA1 subfield, inducing the activation of genes involved in neuroprotection, lowering the neuroinflammatory response and restoring neuropeptide Y- and parvalbumin- expression, which is impaired in the early phases of TMT-induced damage. Our data support the efficacy of estrogen-based neuroprotective approaches to counteract early occurring hippocampal damage in the developing hippocampus.

11.
Mod Pathol ; 31(9): 1361-1366, 2018 09.
Article in English | MEDLINE | ID: mdl-29713042

ABSTRACT

We hypothesized that in glioblastoma recurring after radiotherapy, a condition whereby the brain endothelium undergoes radiation-induced senescence, tumor cells with endothelial phenotype may be relevant for tumor neovascularization. Matched glioblastoma samples obtained at primary surgery and at surgery for tumor recurrence after radiotherapy, all expressing epidermal growth factor receptor variant III (EGFRvIII), were assessed by a technique that combines fluorescent in situ hybridization (FISH) for the EGFR/CEP7 chromosomal probe with immunostaining for endothelial cells (CD31) and activated pericytes (α Smooth Muscle Actin). Five EGFRvIII-expressing paired primary/recurrent glioblastoma samples, in which the tumor cells showed EGFR/CEP7 amplification, were then assessed by CD31 and α Smooth Muscle Actin immunofluorescence. In glomeruloid bodies, the ratio between CD31+ cells with amplified EGFR/CEP7 signal and the total CD31+ cells was 0.23 ± 0.09 (mean ± sem) and 0.63 ± 0.07 in primary tumors and in recurrent ones, respectively (p < 0.002, Student-t test). In capillaries, the ratio of CD31+ cells with amplified EGFR/CEP7 over the total CD31+ cells lining the capillary lumen was 0.21 ± 0.06 (mean ± sem) and 0.42 ± 0.07 at primary surgery and at recurrence, respectively (p < 0.005, Student-t test). Expression of α Smooth Muscle Actin by cells with EGFR/CEP7 amplification was not observed. Then, in glioblastoma recurring after radiotherapy, where the brain endothelium suffers from radiation-induced cell senescence, tumor-derived endothelium plays a role in neo-vascularization.


Subject(s)
Brain Neoplasms/pathology , Cell Transdifferentiation/physiology , Endothelial Cells/pathology , Glioblastoma/pathology , Neoplasm Recurrence, Local/pathology , Animals , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Endothelial Cells/metabolism , Endothelial Cells/radiation effects , ErbB Receptors/genetics , ErbB Receptors/metabolism , Glioblastoma/genetics , Glioblastoma/radiotherapy , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/radiation effects , Humans , In Situ Hybridization, Fluorescence , Mice , Neoplasm Recurrence, Local/genetics
12.
Mediators Inflamm ; 2017: 1626204, 2017.
Article in English | MEDLINE | ID: mdl-28713206

ABSTRACT

Neuroinflammation is one of the major players in amyotrophic lateral sclerosis (ALS) pathogenesis, and astrocytes are significantly involved in this process. The astrocytic protein S100B can be released in pathological states activating the receptor for advanced glycation end products (RAGE). Different indications point to an aberrant expression of S100B and RAGE in ALS. In this work, we observed that S100B and RAGE are progressively and selectively upregulated in astrocytes of diseased rats with a tissue-specific timing pattern, correlated to the level of neurodegeneration. The expression of the full-length and soluble RAGE isoforms could also be linked to the degree of tissue damage. The mere presence of mutant SOD1 is able to increase the intracellular levels and release S100B from astrocytes, suggesting the possibility that an increased astrocytic S100B expression might be an early occurring event in the disease. Finally, our findings indicate that the protein may exert a proinflammatory role in ALS, since its inhibition in astrocytes derived from SOD1G93A mice limits the expression of reactivity-linked/proinflammatory genes. Thus, our results propose the S100B-RAGE axis as an effective contributor to the pathogenesis of the disease, suggesting its blockade as a rational target for a therapeutic intervention in ALS.


Subject(s)
Receptor for Advanced Glycation End Products/metabolism , S100 Calcium Binding Protein beta Subunit/metabolism , Superoxide Dismutase-1/metabolism , Animals , Animals, Genetically Modified , Astrocytes/metabolism , Blotting, Western , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Male , Microscopy, Fluorescence , Rats , Receptor for Advanced Glycation End Products/genetics , S100 Calcium Binding Protein beta Subunit/genetics , Superoxide Dismutase-1/genetics
13.
Cell Stem Cell ; 21(1): 35-50.e9, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28602620

ABSTRACT

Functionally relevant markers of glioblastoma stem-like cells (GSCs) have potential for therapeutic targeting to treat this aggressive disease. Here we used generation and screening of thousands of monoclonal antibodies to search for receptors and signaling pathways preferentially enriched in GSCs. We identified integrin α7 (ITGA7) as a major laminin receptor in GSCs and in primary high-grade glioma specimens. Analyses of mRNA profiles in comprehensive datasets revealed that high ITGA7 expression negatively correlated with survival of patients with both low- and high-grade glioma. In vitro and in vivo analyses showed that ITGA7 plays a key functional role in growth and invasiveness of GSCs. We also found that targeting of ITGA7 by RNAi or blocking mAbs impaired laminin-induced signaling, and it led to a significant delay in tumor engraftment plus a strong reduction in tumor size and invasion. Our data, therefore, highlight ITGA7 as a glioblastoma biomarker and candidate therapeutic target.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/pharmacology , Antibodies, Neoplasm/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Glioblastoma/drug therapy , Integrin alpha Chains/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Animals , Antigens, CD/metabolism , Biomarkers, Tumor/metabolism , Drug Delivery Systems , Gene Expression Regulation/drug effects , Glioblastoma/metabolism , Glioblastoma/pathology , HeLa Cells , Humans , Integrin alpha Chains/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/metabolism , Xenograft Model Antitumor Assays
14.
Stem Cell Res Ther ; 8(1): 53, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28279193

ABSTRACT

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) represent an attractive tool for cell-based cancer therapy mainly because of their ability to migrate to tumors and to release bioactive molecules. However, the impact of MSCs on tumor growth has not been fully established. We previously demonstrated that murine MSCs show a strong tropism towards glioblastoma (GBM) brain xenografts and that these cells are able to uptake and release the chemotherapeutic drug paclitaxel (PTX), maintaining their tropism towards the tumor. Here, we address the therapy-relevant issue of using MSCs from human donors (hMSCs) for local or systemic administration in orthotopic GBM models, including xenografts of patient-derived glioma stem cells (GSCs). METHODS: U87MG or GSC1 cells expressing the green fluorescent protein (GFP) were grafted onto the striatum of immunosuppressed rats. Adipose hMSCs (Ad-hMSCs), fluorescently labeled with the mCherry protein, were inoculated adjacent to or into the tumor. In rats bearing U87MG xenografts, systemic injections of Ad-hMSCs or bone marrow (BM)-hMSCs were done via the femoral vein or carotid artery. In each experiment, either PTX-loaded or unloaded hMSCs were used. To characterize the effects of hMSCs on tumor growth, we analyzed survival, tumor volume, tumor cell proliferation, and microvascular density. RESULTS: Overall, the AD-hMSCs showed remarkable tropism towards the tumor. Intracerebral injection of Ad-hMSCs significantly improved the survival of rats with U87MG xenografts. This effect was associated with a reduction in tumor growth, tumor cell proliferation, and microvascular density. In GSC1 xenografts, intratumoral injection of Ad-hMSCs depleted the tumor cell population and induced migration of resident microglial cells. Overall, PTX loading did not significantly enhance the antitumor potential of hMSCs. Systemically injected Ad- and BM-hMSCs homed to tumor xenografts. The efficiency of hMSC homing ranged between 0.02 and 0.5% of the injected cells, depending both on the route of cell injection and on the source from which the hMSCs were derived. Importantly, systemically injected PTX-loaded hMSCs that homed to the xenograft induced cytotoxic damage to the surrounding tumor cells. CONCLUSIONS: hMSCs have a therapeutic potential in GBM brain xenografts which is also expressed against the GSC population. In this context, PTX loading of hMSCs seems to play a minor role.


Subject(s)
Cell Proliferation , Glioblastoma/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Cell Line, Tumor , Combined Modality Therapy , Glioblastoma/pathology , Humans , Mice , Paclitaxel/administration & dosage , Rats , Xenograft Model Antitumor Assays
15.
Oncotarget ; 8(11): 17873-17886, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-28157712

ABSTRACT

The invasive and lethal nature of Glioblastoma multiforme (GBM) necessitates the continuous identification of molecular targets and search of efficacious therapies to inhibit GBM growth. The GBM resistance to chemotherapy and radiation it is attributed to the existence of a rare fraction of cancer stem cells (CSC) that we have identified within the tumor core and in peritumor tissue of GBM. Since Notch1 pathway is a potential therapeutic target in brain cancer, earlier we highlighted that pharmacological inhibition of Notch1 signalling by γ-secretase inhibitor-X (GSI-X), reduced cell growth of some c-CSC than to their respective p-CSC, but produced negligible effects on cell cycle distribution, apoptosis and cell invasion. In the current study, we assessed the effects of Hes1-targeted shRNA, a Notch1 gene target, specifically on GBM CSC refractory to GSI-X. Depletion of Hes1 protein induces major changes in cell morphology, cell growth rate and in the invasive ability of shHes1-CSC in response to growth factor EGF. shHes1-CSC show a decrease of the stemness marker Nestin concurrently to a marked increase of neuronal marker MAP2 compared to pLKO.1-CSC. Those effects correlated with repression of EGFR protein and modulation of Stat3 phosphorylation at Y705 and S727 residues. In the last decade Stat3 has gained attention as therapeutic target in cancer but there is not yet any approved Stat3-based glioma therapy. Herein, we report that exposure to a Stat3/5 inhibitor, induced apoptosis either in shHes1-CSC or control cells. Taken together, Hes1 seems to be a favorable target but not sufficient itself to target GBM efficaciously, therefore a possible pharmacological intervention should provide for the use of anti-Stat3/5 drugs either alone or in combination regimen.


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Receptor, Notch1/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT5 Transcription Factor/antagonists & inhibitors , Transcription Factor HES-1/antagonists & inhibitors , Tumor Suppressor Proteins/antagonists & inhibitors , Apoptosis/drug effects , Benzimidazoles/pharmacology , Brain Neoplasms/pathology , Carbamates/pharmacology , Cell Differentiation/genetics , Cell Proliferation/genetics , Dipeptides/pharmacology , ErbB Receptors/antagonists & inhibitors , Glioblastoma/pathology , Humans , Microtubule-Associated Proteins/metabolism , Neoplasm Invasiveness/pathology , Neoplastic Stem Cells/metabolism , Phosphorylation , Piperidines/pharmacology , RNA Interference , RNA, Small Interfering/genetics , STAT3 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Transcription Factor HES-1/genetics , Tumor Suppressor Proteins/metabolism
16.
Stem Cell Res Ther ; 6: 194, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26445228

ABSTRACT

INTRODUCTION: The goal of cancer chemotherapy is targeting tumor cells and/or tumor-associated microvessels with the lowest systemic toxicity. Mesenchymal stromal cells (MSCs) are promising vehicles for selective drug delivery due to their peculiar ability to home to pathological tissues. We previously showed that MSCs are able to uptake and subsequently to release the chemotherapeutic compound Paclitaxel (PTX) and to impair the growth of subcutaneous glioblastoma multiforme (GBM) xenografts. Here we used an orthotopic GBM model 1) to assess whether PTX-loaded MSCs (PTX-MSCs) retain a tropism towards the tumor cells in the brain context, and 2) to characterize the cytotoxic damage induced by MSCs-driven PTX release in the tumor microenvironment. METHODS: U87MG GBM cells were fluorescently labeled with the mCherry protein and grafted onto the brain of immunosuppressed rats. In adjacent brain regions, we injected green fluorescent protein-expressing murine MSCs, either loaded with PTX or unloaded. After 1 week survival, the xenografted brain was assessed by confocal microscopy for PTX-induced cell damage. RESULTS: Overall, MSCs showed remarkable tropism towards the tumor. In rats grafted with PTX-MSCs, the nuclei of U87MG cells showed changes that are typically induced by PTX, including multi-spindle mitoses, centrosome number alterations, and nuclear fragmentation. Multi-spindle mitoses resulted in multinucleated cells that were significantly higher in tumors co-grafted with PTX-MSCs than in controls. Nuclear changes did not occur in astrocytes and neurons surrounding the tumor. CONCLUSIONS: MSCs appear particularly suited for anti-neoplastic drug delivery in the brain since PTX-specific damage of GBM cells can be achieved avoiding side effects to the normal tissue.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Mesenchymal Stem Cell Transplantation , Paclitaxel/administration & dosage , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/toxicity , Cell Line, Tumor , Humans , Mesenchymal Stem Cells/drug effects , Paclitaxel/therapeutic use , Paclitaxel/toxicity , Rats , Rats, Wistar
17.
Oncotarget ; 6(35): 37241-56, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26437223

ABSTRACT

Glioblastoma multiforme (GBM) is the most common and fatal malignant adult primary brain tumor. Currently, the overall prognosis for GBM patients remains poor despite advances in neurosurgery and adjuvant treatments. MicroRNAs (miRNAs) contribute to the pathogenesis of various types of tumor, including GBM. In this study we analyzed the expression of a panel of miRNAs, which are known to be differentially expressed by the brain and GBM tumor, in a collection of patient-derived GBM stem-like cells (GSCs). Notably, the average expression level of miR-135b, was the most downregulated compared to its normal counterpart, suggesting a potential role as anti-oncogene.Restoration of miR-135b in GSCs significantly decreased proliferation, migration and clonogenic abilities. More importantly, miR-135b restoration was able to significantly reduce brain infiltration in mouse models of GBM obtained by intracerebral injection of GSC lines. We identified ADAM12 and confirmed SMAD5 and GSK3ß as miR-135b targets and potential mediators of its effects. The whole transcriptome analysis ascertained that the expression of miR-135b downmodulated additional genes driving key pathways in GBM survival and infiltration capabilities.Our results identify a critical role of miR-135b in the regulation of GBM development, suggesting that miR-135b might act as a tumor-suppressor factor and thus providing a potential candidate for the treatment of GBM patients.


Subject(s)
Cell Movement , Cell Proliferation , Cell Self Renewal , Glioblastoma/metabolism , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAM12 Protein , Animals , Apoptosis , Cell Line, Tumor , Down-Regulation , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genotype , Glioblastoma/genetics , Glioblastoma/pathology , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Heterografts , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , Neoplasm Invasiveness , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/transplantation , Phenotype , Signal Transduction , Smad5 Protein/genetics , Smad5 Protein/metabolism , Time Factors , Transfection
18.
PLoS One ; 10(4): e0125697, 2015.
Article in English | MEDLINE | ID: mdl-25919028

ABSTRACT

Bone morphogenetic proteins (BMPs), members of the TGF-ß superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.


Subject(s)
Bone Morphogenetic Protein 7/therapeutic use , Endothelial Cells/metabolism , Glioblastoma/blood supply , Neovascularization, Pathologic/drug therapy , Adipose Tissue/cytology , Animals , Bone Morphogenetic Protein 7/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Collagen/pharmacology , Drug Combinations , Endothelial Cells/drug effects , Fibroblast Growth Factor 2/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Laminin/pharmacology , Male , Mice, Nude , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic/drug effects , Proteoglycans/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction/drug effects , Smad Proteins/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
19.
PLoS One ; 9(2): e88294, 2014.
Article in English | MEDLINE | ID: mdl-24516629

ABSTRACT

Modulation of endogenous neurogenesis is regarded as a promising challenge in neuroprotection. In the rat model of hippocampal neurodegeneration obtained by Trimethyltin (TMT) administration (8 mg/kg), characterised by selective pyramidal cell loss, enhanced neurogenesis, seizures and cognitive impairment, we previously demonstrated a proliferative role of exogenous neuropeptide Y (NPY), on dentate progenitors in the early phases of neurodegeneration. To investigate the functional integration of newly-born neurons, here we studied in adult rats the long-term effects of intracerebroventricular administration of NPY (2 µg/2 µl, 4 days after TMT-treatment), which plays an adjuvant role in neurodegeneration and epilepsy. Our results indicate that 30 days after NPY administration the number of new neurons was still higher in TMT+NPY-treated rats than in control+saline group. As a functional correlate of the integration of new neurons into the hippocampal network, long-term potentiation recorded in Dentate Gyrus (DG) in the absence of GABAA receptor blockade was higher in the TMT+NPY-treated group than in all other groups. Furthermore, qPCR analysis of Kruppel-like factor 9, a transcription factor essential for late-phase maturation of neurons in the DG, and of the cyclin-dependent kinase 5, critically involved in the maturation and dendrite extension of newly-born neurons, revealed a significant up-regulation of both genes in TMT+NPY-treated rats compared with all other groups. To explore the early molecular events activated by NPY administration, the Sonic Hedgehog (Shh) signalling pathway, which participates in the maintenance of the neurogenic hippocampal niche, was evaluated by qPCR 1, 3 and 5 days after NPY-treatment. An early significant up-regulation of Shh expression was detected in TMT+NPY-treated rats compared with all other groups, associated with a modulation of downstream genes. Our data indicate that the neurogenic effect of NPY administration during TMT-induced neurodegeneration involves early Shh pathway activation and results in a functional integration of newly-generated neurons into the local circuit.


Subject(s)
Hippocampus/drug effects , Neurogenesis/drug effects , Neuropeptide Y/pharmacology , Neuroprotective Agents/pharmacology , Trimethyltin Compounds/pharmacology , Animals , Female , Hedgehog Proteins/metabolism , Hippocampus/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Long-Term Potentiation/drug effects , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects
20.
J Neurochem ; 122(2): 415-26, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22537092

ABSTRACT

The effects of intracerebroventricular administration of neuropeptide Y (NPY), which is believed to play an important role in neuroprotection against excitotoxicity and in the modulation of adult neurogenesis, were evaluated in an animal model of hippocampal neurodegeneration and temporal lobe epilepsy represented by trimethyltin (TMT) intoxication. A single TMT injection (8 mg/kg) causes, in the rat brain, massive neuronal death, selectively involving pyramidal neurons, accompanied by glial activation and enhanced hippocampal neurogenesis. Our data indicate that intracerebroventricular administration of exogenous NPY (at the dose of 2 µg/2 µL, 4 days after TMT-administration), in adult rats, exerts a protective role in regard to TMT-induced hippocampal damage and a proliferative effect on the hippocampal neurogenic niche through the up-regulation of Bcl-2, Bcl2l1, Bdnf, Sox-2, NeuroD1, Noggin and Doublecortin genes, contributing to delineate more clearly the role of NPY in in vivo neurodegenerative processes.


Subject(s)
Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/pathology , Hippocampus/drug effects , Nerve Degeneration/prevention & control , Neurogenesis/drug effects , Neuropeptide Y/pharmacology , Neuroprotective Agents , Trimethyltin Compounds , Animals , Antimetabolites , Apoptosis Regulatory Proteins/biosynthesis , Brain-Derived Neurotrophic Factor/biosynthesis , Bromodeoxyuridine , Doublecortin Protein , Epilepsy, Temporal Lobe/chemically induced , Female , Gene Expression/drug effects , Hippocampus/pathology , Immunohistochemistry , Injections, Intraventricular , Nerve Degeneration/etiology , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neurogenesis/genetics , Neuropeptide Y/administration & dosage , RNA/biosynthesis , RNA/isolation & purification , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Receptors, Neuropeptide Y/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...