Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 13(4): 3992-4007, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30822386

ABSTRACT

Multi-drug-resistant tuberculosis (TB) is a major public health problem, concerning about half a million cases each year. Patients hardly adhere to the current strict treatment consisting of more than 10 000 tablets over a 2-year period. There is a clear need for efficient and better formulated medications. We have previously shown that nanoparticles made of cross-linked poly-ß-cyclodextrins (pßCD) are efficient vehicles for pulmonary delivery of powerful combinations of anti-TB drugs. Here, we report that in addition to being efficient drug carriers, pßCD nanoparticles are endowed with intrinsic antibacterial properties. Empty pßCD nanoparticles are able to impair Mycobacterium tuberculosis (Mtb) establishment after pulmonary administration in mice. pßCD hamper colonization of macrophages by Mtb by interfering with lipid rafts, without inducing toxicity. Moreover, pßCD provoke macrophage apoptosis, leading to depletion of infected cells, thus creating a lung microenvironment detrimental to Mtb persistence. Taken together, our results suggest that pßCD nanoparticles loaded or not with antibiotics have an antibacterial action on their own and could be used as a carrier in drug regimen formulations effective against TB.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Carriers/therapeutic use , Mycobacterium tuberculosis/drug effects , Nanoparticles/therapeutic use , Tuberculosis/drug therapy , beta-Cyclodextrins/therapeutic use , Animals , Antitubercular Agents/administration & dosage , Drug Carriers/administration & dosage , Drug Delivery Systems , Female , Humans , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/microbiology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles/administration & dosage , beta-Cyclodextrins/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL