Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
2.
Front Endocrinol (Lausanne) ; 14: 1193373, 2023.
Article in English | MEDLINE | ID: mdl-37396181

ABSTRACT

Diabetes mellitus is a metabolic disease clinically-characterized as acute and chronic hyperglycemia. It is emerging as one of the common conditions associated with incident liver disease in the US. The mechanism by which diabetes drives liver disease has become an intense topic of discussion and a highly sought-after therapeutic target. Insulin resistance (IR) appears early in the progression of type 2 diabetes (T2D), particularly in obese individuals. One of the co-morbid conditions of obesity-associated diabetes that is on the rise globally is referred to as non-alcoholic fatty liver disease (NAFLD). IR is one of a number of known and suspected mechanism that underlie the progression of NAFLD which concurrently exhibits hepatic inflammation, particularly enriched in cells of the innate arm of the immune system. In this review we focus on the known mechanisms that are suspected to play a role in the cause-effect relationship between hepatic IR and hepatic inflammation and its role in the progression of T2D-associated NAFLD. Uncoupling hepatic IR/hepatic inflammation may break an intra-hepatic vicious cycle, facilitating the attenuation or prevention of NAFLD with a concurrent restoration of physiologic glycemic control. As part of this review, we therefore also assess the potential of a number of existing and emerging therapeutic interventions that can target both conditions simultaneously as treatment options to break this cycle.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , Diabetes Mellitus, Type 2/complications , Inflammation/complications
3.
Front Immunol ; 14: 1212641, 2023.
Article in English | MEDLINE | ID: mdl-37388741

ABSTRACT

Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of ß cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic ß cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Cell- and Tissue-Based Therapy , Dendritic Cells/transplantation , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Immune Tolerance
5.
Cardiovasc Diabetol ; 21(1): 130, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35831885

ABSTRACT

BACKGROUND: Liver pathology (LP) characteristic of non-alcoholic fatty acid disease (NAFLD)/non-alcoholic steatohepatitis (NASH) is a prevalent co-morbidity of type 2 diabetes (T2D). Accumulating evidence indicates that neutrophils driving insulin resistance (IR), including hepatic IR, precipitate T2D-associated NAFLD/NASH. We hypothesized that targeting neutrophil accumulation into insulin-sensitive tissues in mice using a CXCR2 antagonist under T2D-precipitating high fat diet (HFD) could improve insulin sensitivity and prevent the progression towards liver pathology reminiscent of NAFLD/NASH. METHODS: Mice were age-matched and on standard rodent chow prior to 1:1 randomization into control and HFD formulated with the CXCR2 antagonist AZD5069 or with biologically inactive substitute. They were monitored for metabolic changes including insulin sensitivity using the hyperinsulinemic-euglycemic clamp and hepatic histopathologic evaluation in H&E-stained sections as well as via immunofluorescence microscopy of liver sections for leukocyte markers, collagen 1A1 formation, α-smooth muscle actin (SMA), and galectin-3 expression, for 16 weeks. Statistical tests used to determine significant differences among study groups and outcomes include Student's t-test, one-way ANOVA, repeated measures two-way ANOVA, and Fisher's exact test, depending on the analytical question. RESULTS: Compared to mice on HFD, mice in the AZD5069-formulated HFD exhibited improved insulin sensitivity, a modest reduction in weight gain, and a significant improvement in LP and markers related to NAFLD/NASH. Mice in the AZD5069-formulated HFD also exhibited reduced neutrophil accumulation into the liver at the end of the 16 week study period. CONCLUSIONS: These results show, for the first time, the effectiveness of a selective CXCR2 antagonist to improve insulin sensitivity, concomitantly preventing the progression towards LP characteristic of NAFLD/NASH. This represents a novel approach to target IR and developing LP under T2D-susceptible conditions using a single agent. Furthermore, our data extend the growing evidence in support of neutrophils as a leukocyte population that imprints and maintains a chronic inflammatory state in the progression of dysregulated metabolism in liver-specific co-morbid conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control
6.
Mol Pharm ; 19(7): 2638-2650, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35621214

ABSTRACT

Nanoparticle formulations have long been proposed as subunit vaccine carriers owing to their ability to entrap proteins and codeliver adjuvants. Poly(lactic-co-glycolic acid) (PLGA) remains one of the most studied polymers for controlled release and nanoparticle drug delivery, and numerous studies exist proposing PLGA particles as subunit vaccine carriers. In this work we report using PLGA nanoparticles modified with biotin (bNPs) to deliver proteins via adsorption and stimulate professional antigen-presenting cells (APCs). We present evidence showing bNPs are capable of retaining proteins through the biotin-avidin interaction. Surface accessible biotin bound both biotinylated catalase (bCAT) through avidin and streptavidin horseradish peroxidase (HRP). Analysis of the HRP found that activity on the bNPs was preserved once captured on the surface of bNP. Further, bNPs were found to have self-adjuvant properties, evidenced by bNP induced IL-1ß, IL-18, and IL-12 production in vitro in APCs, thereby licensing the cells to generate Th1-type helper T cell responses. Cytokine production was reduced in avidin precoated bNPs (but not with other proteins), suggesting that the proinflammatory response is due in part to exposed biotin on the surface of bNPs. bNPs injected subcutaneously were localized to draining lymph nodes detectable after 28 days and were internalized by bronchoalveolar lavage dendritic cells and macrophages in mice in a dose-dependent manner when delivered intranasally. Taken together, these data provide evidence that bNPs should be explored further as potential adjuvanting carriers for subunit vaccines.


Subject(s)
Biotin , Nanoparticles , Adjuvants, Immunologic/chemistry , Animals , Avidin , Dendritic Cells , Mice , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Vaccines, Subunit/metabolism
7.
Diabetes ; 71(12): 2656-2663, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35293987

ABSTRACT

Pancreatic ACE2 receptor expression, together with increased prevalence of insulin-requiring hyperglycemia in patients with coronavirus disease 2019 (COVID-19), suggested that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pancreatic infection might trigger a ß-cell-selective inflammation precipitating autoimmune type 1 diabetes (T1D). We examined T1D incidence in patients with COVID-19 inside a large, global population using a "big data" approach. The incidence in 0-30-year-old patients with confirmed COVID-19 over an ∼15-month period from the beginning of the COVID-19 pandemic was compared with an age-matched population without COVID-19 inside the TriNetX COVID-19 Research Network (>80 million deidentified patient electronic medical records globally). The cohorts were used to generate outcomes of T1D postindex. In those up to 18 years of age, the incidence of insulin-requiring diabetes that could represent T1D in patients with already diagnosed, confirmed COVID-19 was statistically indistinguishable from the control population without COVID-19. In contrast, in those aged 19-30 years, the incidence was statistically greater. These data suggest that the incidence of T1D among patients with COVID-19 <30 years of age, at least up to this time since the beginning of the pandemic, is not greater when compared with an age-, sex-, and BMI-matched population without COVID-19. Nevertheless, we caution that patients with COVID-19 could be asymptomatic of a diabetic/prediabetic state and therefore would not be expected to come to medical attention, remaining undiagnosed. Hence, it is still possible that asymptomatic virus-infected individuals could acquire ß-cell autoimmunity, eventually progressing to dysglycemia and clinical T1D at higher rates.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Humans , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , SARS-CoV-2 , Pandemics , COVID-19/epidemiology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/epidemiology , Angiotensin-Converting Enzyme 2 , Insulin/therapeutic use , Incidence , Peptidyl-Dipeptidase A/metabolism , Insulin, Regular, Human
8.
Diabetes Metab Res Rev ; 38(1): e3483, 2022 01.
Article in English | MEDLINE | ID: mdl-34245096

ABSTRACT

Multiple and complex aetiological processes underlie diabetes mellitus, which invariably result in the development of hyperglycaemia. Although there are two prevalent distinct forms of the disease, that is, type 1 and type 2 diabetes, accumulating evidence indicates that these syndromes share more aetiopathological mechanisms than originally thought. This compels a rethinking of the approaches to prevent and treat the different manifestations of what eventually becomes a hyperglycaemic state. This review aims to address the involvement of neutrophils, the most abundant type of granulocytes involved in the initiation of the acute phase of inflammation, in the aetiopathogenesis of diabetes mellitus, with a focus on type 1 and type 2 diabetes. We review the evidence that neutrophils are the first leucocytes to react to and accumulate inside target tissues of diabetes, such as the pancreas and insulin-sensitive tissues. We then review available data on the role of neutrophils and their functional alteration, with a focus on NETosis, in the progression towards clinical disease. Finally, we review potential approaches as secondary and adjunctive treatments to limit neutrophil-mediated damage in the prevention of the progression of subclinical disease to clinical hyperglycaemia.


Subject(s)
Diabetes Mellitus, Type 2 , Extracellular Traps , Hyperglycemia , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/pathology , Humans , Hyperglycemia/pathology , Inflammation/pathology , Neutrophils/pathology
9.
Curr Diab Rep ; 21(12): 54, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34902055

ABSTRACT

PURPOSE OF REVIEW: Diabetes mellitus can be categorized into two major variants, type 1 and type 2. A number of traits such as clinical phenotype, age at disease onset, genetic background, and underlying pathogenesis distinguish the two forms. RECENT FINDINGS: Recent evidence indicates that type 1 diabetes can be accompanied by insulin resistance and type 2 diabetes exhibits self-reactivity. These two previously unknown conditions can influence the progression and outcome of the disease. Unlike most conventional considerations, diabetes appears to consist of a spectrum of intermediate phenotypes that includes monogenic and polygenic loci linked to inflammatory processes including autoimmunity, beta cell impairment, and insulin resistance. Here we discuss why a shift of the classical bi-modal view of diabetes (autoimmune vs. non-autoimmune) is necessary in favor of a model of an immunological continuum of endotypes lying between the two extreme "insulin-resistant" and "autoimmune beta cell targeting," shaped by environmental and genetic factors which contribute to determine specific immune-conditioned outcomes.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Insulin Resistance , Autoimmunity , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Humans , Inflammation
10.
Front Med (Lausanne) ; 8: 660877, 2021.
Article in English | MEDLINE | ID: mdl-33937296

ABSTRACT

Islet transplantation can restore glycemic control in patients with type 1 diabetes. Using this procedure, the early stages of engraftment are often crucial to long-term islet function, and outcomes are not always successful. Numerous studies have shown that mesenchymal stem cells (MSCs) facilitate islet graft function. However, experimental data can be inconsistent due to variables associated with MSC generation (including donor characteristics and tissue source), thus, demonstrating the need for a well-characterized and uniform cell product before translation to the clinic. Unlike bone marrow- or adipose tissue-derived MSCs, human embryonic stem cell-derived-MSCs (hESC-MSCs) offer an unlimited source of stable and highly-characterized cells that are easily scalable. Here, we studied the effects of human hemangioblast-derived mesenchymal cells (HMCs), (i.e., MSCs differentiated from hESCs using a hemangioblast intermediate), on islet cell transplantation using a minimal islet mass model. The co-transplantation of the HMCs allowed a mass of islets that was insufficient to correct diabetes on its own to restore glycemic control in all recipients. Our in vitro studies help to elucidate the mechanisms including reduction of cytokine stress by which the HMCs support islet graft protection in vivo. Derivation, stability, and scalability of the HMC source may offer unique advantages for clinical applications, including fewer islets needed for successful islet transplantation.

11.
Front Endocrinol (Lausanne) ; 12: 565981, 2021.
Article in English | MEDLINE | ID: mdl-33776903

ABSTRACT

A growing body of evidence indicates that neutrophils are the first major leukocyte population accumulating inside the pancreas even before the onset of a lymphocytic-driven impairment of functional beta cells in type 1 diabetes mellitus (T1D). In humans, pancreata from T1D deceased donors exhibit significant neutrophil accumulation. We present a time course of previously unknown inflammatory changes that accompany neutrophil and neutrophil elastase accumulation in the pancreas of the non-obese diabetic (NOD) mouse strain as early as 2 weeks of age. We confirm earlier findings in NOD mice that neutrophils accumulate as early as 2 weeks of age. We also observe a concurrent increase in the expression of neutrophil elastase in this time period. We also detect components of neutrophil extracellular traps (NET) mainly in the exocrine tissue of the pancreas during this time as well as markers of vascular pathology as early as 2 weeks of age. Age- and sex-matched C57BL/6 mice do not exhibit these features inside the pancreas. When we treated NOD mice with inhibitors of myeloperoxidase and neutrophil elastase, two key effectors of activated neutrophil activity, alone or in combination, we were unable to prevent the progression to hyperglycemia in any manner different from untreated control mice. Our data confirm and add to the body of evidence demonstrating neutrophil accumulation inside the pancreas of mice genetically susceptible to T1D and also offer novel insights into additional pathologic mechanisms involving the pancreatic vasculature that have, until now, not been discovered inside the pancreata of these mice. However, inhibition of key neutrophil enzymes expressed in activated neutrophils could not prevent diabetes. These findings add to the body of data supporting a role for neutrophils in the establishment of early pathology inside the pancreas, independently of, and earlier from the time at onset of lymphocytic infiltration. However, they also suggest that inhibition of neutrophils alone, acting via myeloperoxidase and neutrophil elastase only, in the absence of other other effector cells, is insufficient to alter the natural course of autoimmune diabetes, at least in the NOD model of the disease.


Subject(s)
Growth and Development/physiology , Inflammation/pathology , Neutrophils/physiology , Pancreas/pathology , Prediabetic State/pathology , Age Factors , Animals , Animals, Newborn , Antigens, Ly/metabolism , Autoantibodies/metabolism , Citrullination/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Histones/metabolism , Inflammation/complications , Inflammation/metabolism , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Leukocyte Elastase/metabolism , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Neutrophils/immunology , Neutrophils/pathology , Pancreas/immunology , Pancreas/metabolism , Prediabetic State/immunology , Prediabetic State/metabolism
12.
Front Immunol ; 12: 586220, 2021.
Article in English | MEDLINE | ID: mdl-33763059

ABSTRACT

Type 1 diabetes (T1D) is a disorder of impaired glucoregulation due to lymphocyte-driven pancreatic autoimmunity. Mobilizing dendritic cells (DC) in vivo to acquire tolerogenic activity is an attractive therapeutic approach as it results in multiple and overlapping immunosuppressive mechanisms. Delivery of agents that can achieve this, in the form of micro/nanoparticles, has successfully prevented a number of autoimmune conditions in vivo. Most of these formulations, however, do not establish multiple layers of immunoregulation. all-trans retinoic acid (RA) together with transforming growth factor beta 1 (TGFß1), in contrast, has been shown to promote such mechanisms. When delivered in separate nanoparticle vehicles, they successfully prevent the progression of early-onset T1D autoimmunity in vivo. Herein, we show that the approach can be simplified into a single microparticle formulation of RA + TGFß1 with surface decoration with the T1D-relevant insulin autoantigen. We show that the onset of hyperglycemia is prevented when administered into non-obese diabetic mice that are at the mid-stage of active islet-selective autoimmunity. Unexpectedly, the preventive effects do not seem to be mediated by increased numbers of regulatory T-lymphocytes inside the pancreatic lymph nodes, at least following acute administration of microparticles. Instead, we observed a mild increase in the frequency of regulatory B-lymphocytes inside the mesenteric lymph nodes. These data suggest additional and potentially-novel mechanisms that RA and TGFß1 could be modulating to prevent progression of mid-stage autoimmunity to overt T1D. Our data further strengthen the rationale to develop RA+TGFß1-based micro/nanoparticle "vaccines" as possible treatments of pre-symptomatic and new-onset T1D autoimmunity.


Subject(s)
Autoantigens/immunology , Autoimmunity/drug effects , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Transforming Growth Factor beta1/pharmacology , Tretinoin/pharmacology , Animals , Dendritic Cells , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/drug therapy , Drug Compounding , Female , Insulin/metabolism , Lymphocyte Count , Mice , Mice, Inbred NOD , Pancreas/metabolism , Pancreas/pathology , Severity of Illness Index , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta1/chemistry , Tretinoin/chemistry
13.
Diabetes ; 70(2): 313-322, 2021 02.
Article in English | MEDLINE | ID: mdl-33472941

ABSTRACT

Type 1 diabetes (T1D) is characterized by insulin deficiency resulting from the selective destruction of pancreatic ß-cells by self-reactive T cells. Recent evidence demonstrates that innate immune responses substantially contribute to the pathogenesis of T1D, as they represent a first line of response to danger/damage signals. Here we discuss evidence on how, in a relapsing-remitting pattern, pancreas remodeling, diet, microbiota, gut permeability, and viral/bacterial infections induce the accumulation of leukocytes of the innate arm of the immune system throughout the pancreas. The subsequent acquisition and presentation of endocrine and exocrine antigens to the adaptive arm of the immune system results in a chronic progression of pancreatic damage. This process provides for the generation of self-reactive T-cell responses; however, the relative weight that genetic and environmental factors have on the etiopathogenesis of T1D is endotype imprinted and patient specific. With this Perspectives in Diabetes, our goal is to encourage the scientific community to rethink mechanisms underlying T1D pathogenesis and to consider therapeutic approaches that focus on these processes in intervention trials within new-onset disease as well as in efforts seeking the disorder's prevention in individuals at high risk.


Subject(s)
Diabetes Mellitus, Type 1/pathology , Immunity, Innate , Insulin-Secreting Cells/pathology , Pancreas/pathology , T-Lymphocytes/pathology , Animals , Diabetes Mellitus, Type 1/immunology , Humans , Insulin-Secreting Cells/immunology , Pancreas/immunology , T-Lymphocytes/immunology
14.
Article in English | MEDLINE | ID: mdl-36110983

ABSTRACT

Chronic wounds caused by diabetes are a significant medical challenge. Complications from non-healing can result in dire consequences for patients and cost the healthcare system billions of dollars annually. Non-healing in wounds for diabetic patient's results from a combination of factors which impair clearing of injured tissue, proliferation of healthy cell populations and increase risk of infection. Wound dressings continue to form the basis for the treatment of chronic wounds. Traditionally, these focused solely on hydration of the wound site and mitigating infection risk. Hydrogel systems are ready made to meet these basic requirements due to their intrinsic hydration properties and ability to deliver active ingredients. Flexibility in materials and methods of release allowed these systems to remain targets of research into the 21st century. Improved understanding of the wound environment and healing cascades has led to the development of more advanced systems which incorporate endogenous growth factors and living cells. Despite their promise, clinical efficacy of these systems has remained a challenge. Further, the regulatory pathways for approval add a layer of complexity to translate pre-clinical work into marketed products. In this review, we discuss systems currently in clinical use, pre-clinical directions and regulatory challenges for hydrogels in the treatment of diabetic chronic wounds.

15.
Front Immunol ; 10: 148, 2019.
Article in English | MEDLINE | ID: mdl-30787930

ABSTRACT

Tolerogenic dendritic cells and T-regulatory cells are two immune cell populations with the potential to prevent the onset of clinical stage type 1 diabetes, and manage the beginning of underlying autoimmunity, at the time-at-onset and onwards. Initial phase I trials demonstrated that the administration of a number of these cell populations, generated ex vivo from peripheral blood leukocytes, was safe. Outcomes of some of these trials also suggested some level of autoimmunity regulation, by the increase in the numbers of regulatory cells at different points in a network of immune regulation in vivo. As these cell populations come to the cusp of pivotal phase II efficacy trials, a number of questions still need to be addressed. At least one mechanism of action needs to be verified as operational, and through this mechanism biomarkers predictive of the underlying autoimmunity need to be identified. Efficacy in the regulation of the underlying autoimmunity also need to be monitored. At the same time, the absence of a common phenotype core among the different dendritic cell and T-regulatory cell populations, that have completed phase I and early phase II trials, necessitates a better understanding of what makes these cells tolerogenic, especially if a uniform phenotypic core cannot be identified. Finally, the inter-relationship of tolerogenic dendritic cells and T-regulatory cells for survival, induction, and maintenance of a tolerogenic state that manages the underlying diabetes autoimmunity, raises the possibility to co-administer, or even to serially-administer tolerogenic dendritic cells together with T-regulatory cells as a cellular co-therapy, enabling the best possible outcome. This is currently a knowledge gap that this review aims to address.


Subject(s)
Autoimmune Diseases/therapy , Dendritic Cells/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoantigens/immunology , Autoimmune Diseases/immunology , Cell- and Tissue-Based Therapy , Humans
16.
Front Immunol ; 9: 894, 2018.
Article in English | MEDLINE | ID: mdl-29774025

ABSTRACT

Dendritic cells (DC) are important in the onset and severity of inflammatory bowel disease (IBD). Tolerogenic DC induce T-cells to become therapeutic Foxp3+ regulatory T-cells (Tregs). We therefore asked if experimental IBD could be prevented by administration of bone marrow-derived DC generated under conventional GM-CSF/IL-4 conditions but in the presence of a mixture of antisense DNA oligonucleotides targeting the primary transcripts of CD40, CD80, and CD86. These cell products (which we call AS-ODN BM-DC) have demonstrated tolerogenic activity in preventing type 1 diabetes and preserving beta cell mass in new-onset type 1 diabetes in the NOD mouse strain, in earlier studies. In addition to measuring efficacy in prevention of experimental IBD, we also sought to identify possible mechanism(s) of action. Weight, behavior, stool frequency, and character were observed daily for 7-10 days in experimental colitis in mice exposed to dextran sodium sulfate (DSS) following injection of the AS-ODN BM-DC. After euthanasia, the colons were processed for histology while spleen and mesenteric lymph nodes (MLNs) were made into single cells to measure Foxp3+ Treg as well as IL-10+ regulatory B-cell (Breg) population frequency by flow cytometry. AS-ODN BM-DC prevented DSS-induced colitis development. Recipients of these cells exhibited significant increases in Foxp3+ Treg and IL-10+ Breg in MLN and spleen. Histological examination of colon sections of colitis-free mice remained largely architecturally physiologic and mostly free of leukocyte infiltration when compared with DSS-treated animals. Although DSS colitis is mainly an innate immunity-driven condition, our study adds to the growing body of evidence showing that Foxp3+ Treg and IL-10 Bregs can suppress a mainly innate-driven inflammation. The already-established safety of human DC generated from monocytic progenitors in the presence of the mixture of antisense DNA targeting the primary transcripts of CD40, CD80, and CD86 in humans offers the potential to adapt them for clinical IBD therapy.


Subject(s)
Adoptive Transfer/methods , Bone Marrow Cells/immunology , Colitis, Ulcerative/therapy , Dendritic Cells/transplantation , Adult , Animals , Antigens, Surface/genetics , Antigens, Surface/immunology , B-Lymphocytes, Regulatory/immunology , B-Lymphocytes, Regulatory/metabolism , Cells, Cultured , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colon/immunology , Colon/pathology , DNA, Antisense/genetics , Dendritic Cells/immunology , Dextran Sulfate/toxicity , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Healthy Volunteers , Humans , Interleukin-10/metabolism , Mice , Mice, Inbred NOD , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Treatment Outcome
17.
Front Immunol ; 8: 1279, 2017.
Article in English | MEDLINE | ID: mdl-29075262

ABSTRACT

Tolerogenic dendritic cell (tDC)-based clinical trials for the treatment of autoimmune diseases are now a reality. Clinical trials are currently exploring the effectiveness of tDC to treat autoimmune diseases of type 1 diabetes mellitus, rheumatoid arthritis, multiple sclerosis (MS), and Crohn's disease. This review will address tDC employed in current clinical trials, focusing on cell characteristics, mechanisms of action, and clinical findings. To date, the publicly reported human trials using tDC indicate that regulatory lymphocytes (largely Foxp3+ T-regulatory cell and, in one trial, B-regulatory cells) are, for the most part, increased in frequency in the circulation. Other than this observation, there are significant differences in the major phenotypes of the tDC. These differences may affect the outcome in efficacy of recently launched and impending phase II trials. Recent efforts to establish a catalog listing where tDC converge and diverge in phenotype and functional outcome are an important first step toward understanding core mechanisms of action and critical "musts" for tDC to be therapeutically successful. In our view, the most critical parameter to efficacy is in vivo stability of the tolerogenic activity over phenotype. As such, methods that generate tDC that can induce and stably maintain immune hyporesponsiveness to allo- or disease-specific autoantigens in the presence of powerful pro-inflammatory signals are those that will fare better in primary endpoints in phase II clinical trials (e.g., disease improvement, preservation of autoimmunity-targeted tissue, allograft survival). We propose that pre-treatment phenotypes of tDC in the absence of functional stability are of secondary value especially as such phenotypes can dramatically change following administration, especially under dynamic changes in the inflammatory state of the patient. Furthermore, understanding the outcomes of different methods of cell delivery and sites of delivery on functional outcomes, as well as quality control variability in the functional outcomes resulting from the various approaches of generating tDC for clinical use, will inform more standardized ex vivo generation methods. An understanding of these similarities and differences, with a reference point the large number of naturally occurring tDC populations with different immune profiles described in the literature, could explain some of the expected and unanticipated outcomes of emerging tDC clinical trials.

18.
Front Immunol ; 8: 1844, 2017.
Article in English | MEDLINE | ID: mdl-29379498

ABSTRACT

Cellular therapies with CD4+ T regulatory cells (Tregs) hold promise of efficacious treatment for the variety of autoimmune and allergic diseases as well as posttransplant complications. Nevertheless, current manufacturing of Tregs as a cellular medicinal product varies between different laboratories, which in turn hampers precise comparisons of the results between the studies performed. While the number of clinical trials testing Tregs is already substantial, it seems to be crucial to provide some standardized characteristics of Treg products in order to minimize the problem. We have previously developed reporting guidelines called minimum information about tolerogenic antigen-presenting cells, which allows the comparison between different preparations of tolerance-inducing antigen-presenting cells. Having this experience, here we describe another minimum information about Tregs (MITREG). It is important to note that MITREG does not dictate how investigators should generate or characterize Tregs, but it does require investigators to report their Treg data in a consistent and transparent manner. We hope this will, therefore, be a useful tool facilitating standardized reporting on the manufacturing of Tregs, either for research purposes or for clinical application. This way MITREG might also be an important step toward more standardized and reproducible testing of the Tregs preparations in clinical applications.

19.
PeerJ ; 4: e2300, 2016.
Article in English | MEDLINE | ID: mdl-27635311

ABSTRACT

Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL