Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 35(21): 8995-9006, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38027540

ABSTRACT

Over one hundred years have passed since the discovery of the p-type transparent conducting material copper iodide, predating the concept of the "electron-hole" itself. Supercentenarian status notwithstanding, little is understood about the charge transport mechanisms in CuI. Herein, a variety of modeling techniques are used to investigate the charge transport properties of CuI, and limitations to the hole mobility over experimentally achievable carrier concentrations are discussed. Poor dielectric response is responsible for extensive scattering from ionized impurities at degenerately doped carrier concentrations, while phonon scattering is found to dominate at lower carrier concentrations. A phonon-limited hole mobility of 162 cm2 V-1 s-1 is predicted at room temperature. The simulated charge transport properties for CuI are compared to existing experimental data, and the implications for future device performance are discussed. In addition to charge transport calculations, the defect chemistry of CuI is investigated with hybrid functionals, revealing that reasonably localized holes from the copper vacancy are the predominant source of charge carriers. The chalcogens S and Se are investigated as extrinsic dopants, where it is found that despite relatively low defect formation energies, they are unlikely to act as efficient electron acceptors due to the strong localization of holes and subsequent deep transition levels.

2.
Phys Chem Chem Phys ; 24(20): 12580-12591, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35579374

ABSTRACT

Polarons are quasi-particles made from electrons interacting with vibrations in crystal lattices. They derive their name from the strong electron-vibration polar interactions in ionic systems, that induce spectroscopic and optical signatures of such quasi-particles. In this paper, we focus on diamond, a non-polar crystal with inversion symmetry which nevertheless shows interesting signatures stemming from electron-vibration interactions, better denoted "nonpolaron" signatures in this case. The (non)polaronic effects are produced by short-range crystal fields, while long-range quadrupoles only have a small influence. The corresponding many-body spectral function has a characteristic energy dependence, showing a plateau structure that is similar to but distinct from the satellites observed in the polar Fröhlich case. We determine the temperature-dependent spectral function of diamond by two methods: the standard Dyson-Migdal approach, which calculates electron-phonon interactions within the lowest-order expansion of the self-energy, and the cumulant expansion, which includes higher orders of electron-phonon interactions. The latter corrects the nonpolaron energies and broadening, providing a more realistic spectral function, which we examine in detail for both conduction and valence band edges.

3.
Sci Data ; 8(1): 217, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385453

ABSTRACT

The Open Databases Integration for Materials Design (OPTIMADE) consortium has designed a universal application programming interface (API) to make materials databases accessible and interoperable. We outline the first stable release of the specification, v1.0, which is already supported by many leading databases and several software packages. We illustrate the advantages of the OPTIMADE API through worked examples on each of the public materials databases that support the full API specification.

4.
Phys Rev Lett ; 125(13): 136601, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-33034486

ABSTRACT

We include the treatment of quadrupolar fields beyond the Fröhlich interaction in the first-principles electron-phonon vertex in semiconductors. Such quadrupolar fields induce long-range interactions that have to be taken into account for accurate physical results. We apply our formalism to Si (nonpolar), GaAs, and GaP (polar) and demonstrate that electron mobilities show large errors if dynamical quadrupoles are not properly treated.

5.
J Chem Phys ; 152(12): 124102, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32241118

ABSTRACT

abinit is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe-Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the "temperature-dependent effective potential" approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which abinit relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts, and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap, and spin-magnetic-field perturbation. The abinit DFPT implementation is very general, including systems with van der Waals interaction or with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library libpaw. abinit has strong links with many other software projects that are briefly mentioned.

6.
Sci Data ; 5: 180065, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29714723

ABSTRACT

The knowledge of the vibrational properties of a material is of key importance to understand physical phenomena such as thermal conductivity, superconductivity, and ferroelectricity among others. However, detailed experimental phonon spectra are available only for a limited number of materials, which hinders the large-scale analysis of vibrational properties and their derived quantities. In this work, we perform ab initio calculations of the full phonon dispersion and vibrational density of states for 1521 semiconductor compounds in the harmonic approximation based on density functional perturbation theory. The data is collected along with derived dielectric and thermodynamic properties. We present the procedure used to obtain the results, the details of the provided database and a validation based on the comparison with experimental data.

7.
Sci Rep ; 7(1): 7344, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28779127

ABSTRACT

Raman spectra obtained by the inelastic scattering of light by crystalline solids contain contributions from first-order vibrational processes (e.g. the emission or absorption of one phonon, a quantum of vibration) as well as higher-order processes with at least two phonons being involved. At second order, coupling with the entire phonon spectrum induces a response that may strongly depend on the excitation energy, and reflects complex processes more difficult to interpret. In particular, excitons (i.e. bound electron-hole pairs) may enhance the absorption and emission of light, and couple strongly with phonons in resonance conditions. We design and implement a first-principles methodology to compute second-order Raman scattering, incorporating dielectric responses and phonon eigenstates obtained from density-functional theory and many-body theory. We demonstrate our approach for the case of silicon, relating frequency-dependent relative Raman intensities, that are in excellent agreement with experiment, to different vibrations and regions of the Brillouin zone. We show that exciton-phonon coupling, computed from first principles, indeed strongly affects the spectrum in resonance conditions. The ability to analyze second-order Raman spectra thus provides direct insight into this interaction.

8.
Science ; 351(6280): aad3000, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-27013736

ABSTRACT

The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

SELECTION OF CITATIONS
SEARCH DETAIL
...