Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ISME Commun ; 4(1): ycae069, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38966402

ABSTRACT

Lichens are remarkable and classic examples of symbiotic organisms that have fascinated scientists for centuries. Yet, it has only been for a couple of decades that significant advances have focused on the diversity of their green algal and/or cyanobacterial photobionts. Cyanolichens, which contain cyanobacteria as their photosynthetic partner, include up to 10% of all known lichens and, as such, studies on their cyanobionts are much rarer compared to their green algal counterparts. For the unicellular cyanobionts, i.e. cyanobacteria that do not form filaments, these studies are even scarcer. Nonetheless, these currently include at least 10 different genera in the cosmopolitan lichen order Lichinales. An international consortium (International Network of CyanoBionts; INCb) will tackle this lack of knowledge. In this article, we discuss the status of current unicellular cyanobiont research, compare the taxonomic resolution of photobionts from cyanolichens with those of green algal lichens (chlorolichens), and give a roadmap of research on how to recondition the underestimated fraction of symbiotic unicellular cyanobacteria in lichens.

2.
Heliyon ; 10(4): e25763, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404884

ABSTRACT

Purpose: Cultured lichen mycobionts are valuable sources of new natural compounds. Mycobiont of Graphis handelii growing in Vietnam was isolated, cultivated and chemically investigated. The crude extract of this cultured mycobiont showed potent alpha-glucosidase inhibition with an IC50 value of 50 µg/mL. Methods: Multiple chromatographic methods were applied to the extract to isolate compounds. The combination of Nuclear Magnetic Resonance analysis and high-resolution mass spectroscopy determined their chemical structures. Electrophilic bromination/chlorination was applied to obtain new derivatives using NaBr/H2O2 and NaCl/H2O2 reagents. Compounds were evaluated for enzyme inhibitory activities, including alpha-glucosidase inhibition, HIV-1 reverse transcriptase inhibition, SARS-CoV-2 main protease (Mpro) inhibition, anti-inflammatory activity, and cytotoxicity against several cancer cell lines. A molecular docking study for anti-SARS-CoV-2 was conducted to understand the inhibitory mechanism. Results: A new diphenyl ether, handelone (1) and a known compound xylarinic acid A (2) were isolated and elucidated. Four synthetic products 6'-bromohandelone (1a), 2'-bromohandelone (1b), 2',6'-dibromohandelone (1c), and 2',6'-dichlorohandelone (1d) were prepared. Compound 1 showed good activity against Mpro with an IC50 value of 5.2 µM but it showed weak or inactive activity in other tests. Other compounds were inactive in all assays. Conclusion: A new compound, handelone (1) was isolated from the cultured mycobiont of Graphis handelii. From these compounds, four new derivatives were prepared. Compound 1 showed good activity against Mpro with an IC50 value of 5.2 µM but it showed weak or inactive activity in other tests. Other compounds were inactive in all assays.

SELECTION OF CITATIONS
SEARCH DETAIL
...