Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 376(6597): 1094-1101, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35653463

ABSTRACT

Ambitious conservation efforts are needed to stop the global biodiversity crisis. In this study, we estimate the minimum land area to secure important biodiversity areas, ecologically intact areas, and optimal locations for representation of species ranges and ecoregions. We discover that at least 64 million square kilometers (44% of terrestrial area) would require conservation attention (ranging from protected areas to land-use policies) to meet this goal. More than 1.8 billion people live on these lands, so responses that promote autonomy, self-determination, equity, and sustainable management for safeguarding biodiversity are essential. Spatially explicit land-use scenarios suggest that 1.3 million square kilometers of this land is at risk of being converted for intensive human land uses by 2030, which requires immediate attention. However, a sevenfold difference exists between the amount of habitat converted in optimistic and pessimistic land-use scenarios, highlighting an opportunity to avert this crisis. Appropriate targets in the Post-2020 Global Biodiversity Framework to encourage conservation of the identified land would contribute substantially to safeguarding biodiversity.


Subject(s)
Biodiversity , Conservation of Natural Resources , Humans
2.
PeerJ ; 3: e1303, 2015.
Article in English | MEDLINE | ID: mdl-26587336

ABSTRACT

The recognition of individuals forms the basis of many endangered species monitoring protocols. This process typically relies on manual recognition techniques. This study aimed to calculate a measure of the error rates inherent within the manual technique and also sought to identify visual traits that aid identification, using the critically endangered mountain bongo, Tragelaphus eurycerus isaaci, as a model system. Identification accuracy was assessed with a matching task that required same/different decisions to side-by-side pairings of individual bongos. Error rates were lowest when only the flanks of bongos were shown, suggesting that the inclusion of other visual traits confounded accuracy. Accuracy was also higher for photographs of captive animals than camera-trap images, and in observers experienced in working with mountain bongos, than those unfamiliar with the sub-species. These results suggest that the removal of non-essential morphological traits from photographs of bongos, the use of high-quality images, and relevant expertise all help increase identification accuracy. Finally, given the rise in automated identification and the use of citizen science, something our results would suggest is applicable within the context of the mountain bongo, this study provides a framework for assessing their accuracy in individual as well as species identification.

SELECTION OF CITATIONS
SEARCH DETAIL
...