Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38659940

ABSTRACT

During mitosis, interphase chromatin is rapidly converted into rod-shaped mitotic chromosomes. Using Hi-C, imaging, proteomics and polymer modeling, we determine how the activity and interplay between loop-extruding SMC motors accomplishes this dramatic transition. Our work reveals rules of engagement for SMC complexes that are critical for allowing cells to refold interphase chromatin into mitotic chromosomes. We find that condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. In contrast, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion while separating the sisters. Studies of mitotic chromosomes formed by cohesin, condensin II and condensin I alone or in combination allow us to develop new models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins do not freely pass one another but stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase loops are extruded in vivo at ~1-3 kb/sec by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.

2.
Genome Res ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129076

ABSTRACT

Mammalian sperm show an unusual and heavily compacted genomic packaging state. In addition to its role in organizing the compact and hydrodynamic sperm head, it has been proposed that sperm chromatin architecture helps to program gene expression in the early embryo. Scores of genome-wide surveys in sperm have reported patterns of chromatin accessibility, nucleosome localization, histone modification, and chromosome folding. Here, we revisit these studies in light of recent reports that sperm obtained from the mouse epididymis are contaminated with low levels of cell-free chromatin. In the absence of proper sperm lysis, we readily recapitulate multiple prominent genome-wide surveys of sperm chromatin, suggesting that these profiles primarily reflect contaminating cell-free chromatin. Removal of cell-free DNA, and appropriate lysis conditions, are together required to reveal a sperm chromatin state distinct from most previous reports. Using ATAC-seq to explore relatively accessible genomic loci, we identify a landscape of open loci associated with early development and transcriptional control. Histone modification and chromosome folding profiles also strongly support the hypothesis that prior studies suffer from contamination, but technical challenges associated with reliably preserving the architecture of the compacted sperm head prevent us from confidently assaying true localization patterns for these epigenetic marks. Together, our studies show that our knowledge of chromosome packaging in mammalian sperm remains largely incomplete, and motivate future efforts to more accurately characterize genome organization in mature sperm.

3.
Cell Rep ; 42(9): 113132, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37708024

ABSTRACT

Uveal melanoma (UM) is a rare cancer resulting from the transformation of melanocytes in the uveal tract. Integrative analysis has identified four molecular and clinical subsets of UM. To improve our molecular understanding of UM, we performed extensive multi-omics characterization comparing two aggressive UM patient-derived xenograft models with normal choroidal melanocytes, including DNA optical mapping, specific histone modifications, and DNA topology analysis using Hi-C. Our gene expression and cytogenetic analyses suggest that genomic instability is a hallmark of UM. We also identified a recurrent deletion in the BAP1 promoter resulting in loss of expression and associated with high risk of metastases in UM patients. Hi-C revealed chromatin topology changes associated with the upregulation of PRAME, an independent prognostic biomarker in UM, and a potential therapeutic target. Our findings illustrate how multi-omics approaches can improve our understanding of tumorigenesis and reveal two distinct mechanisms of gene expression dysregulation in UM.


Subject(s)
Melanoma , Multiomics , Humans , Melanoma/pathology , Melanocytes/metabolism , DNA , Antigens, Neoplasm/genetics
4.
Nature ; 616(7957): 495-503, 2023 04.
Article in English | MEDLINE | ID: mdl-37046085

ABSTRACT

Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.


Subject(s)
Animal Fins , Biological Evolution , Genome , Genomics , Skates, Fish , Animals , Animal Fins/anatomy & histology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Skates, Fish/anatomy & histology , Skates, Fish/genetics , Zebrafish/genetics , Genes, Reporter/genetics
5.
J Vis Exp ; (191)2023 01 20.
Article in English | MEDLINE | ID: mdl-36744801

ABSTRACT

Chromosome conformation capture (3C) is used to detect three-dimensional chromatin interactions. Typically, chemical crosslinking with formaldehyde (FA) is used to fix chromatin interactions. Then, chromatin digestion with a restriction enzyme and subsequent religation of fragment ends converts three-dimensional (3D) proximity into unique ligation products. Finally, after reversal of crosslinks, protein removal, and DNA isolation, DNA is sheared and prepared for high-throughput sequencing. The frequency of proximity ligation of pairs of loci is a measure of the frequency of their colocalization in three-dimensional space in a cell population. A sequenced Hi-C library provides genome-wide information on interaction frequencies between all pairs of loci. The resolution and precision of Hi-C relies on efficient crosslinking that maintains chromatin contacts and frequent and uniform fragmentation of the chromatin. This paper describes an improved in situ Hi-C protocol, Hi-C 3.0, that increases the efficiency of crosslinking by combining two crosslinkers (formaldehyde [FA] and disuccinimidyl glutarate [DSG]), followed by finer digestion using two restriction enzymes (DpnII and DdeI). Hi-C 3.0 is a single protocol for the accurate quantification of genome folding features at smaller scales such as loops and topologically associating domains (TADs), as well as features at larger nucleus-wide scales such as compartments.


Subject(s)
Chromatin , Chromosomes , Chromosomes/genetics , Chromosomes/metabolism , Chromatin/genetics , DNA/genetics , DNA/chemistry , Cell Nucleus/metabolism , DNA Restriction Enzymes/metabolism , Formaldehyde/chemistry , Nucleic Acid Conformation
6.
Nature ; 606(7915): 812-819, 2022 06.
Article in English | MEDLINE | ID: mdl-35676475

ABSTRACT

DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability1,2. At present, it is unknown how the locations of replication origins are determined in the human genome. Here we dissect the role of topologically associating domains (TADs)3-6, subTADs7 and loops8 in the positioning of replication initiation zones (IZs). We stratify TADs and subTADs by the presence of corner-dots indicative of loops and the orientation of CTCF motifs. We find that high-efficiency, early replicating IZs localize to boundaries between adjacent corner-dot TADs anchored by high-density arrays of divergently and convergently oriented CTCF motifs. By contrast, low-efficiency IZs localize to weaker dotless boundaries. Following ablation of cohesin-mediated loop extrusion during G1, high-efficiency IZs become diffuse and delocalized at boundaries with complex CTCF motif orientations. Moreover, G1 knockdown of the cohesin unloading factor WAPL results in gained long-range loops and narrowed localization of IZs at the same boundaries. Finally, targeted deletion or insertion of specific boundaries causes local replication timing shifts consistent with IZ loss or gain, respectively. Our data support a model in which cohesin-mediated loop extrusion and stalling at a subset of genetically encoded TAD and subTAD boundaries is an essential determinant of the locations of replication origins in human S phase.


Subject(s)
Cell Cycle Proteins , Chromatin , Chromosomal Proteins, Non-Histone , Replication Origin , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Replication , Humans , Replication Origin/genetics , S Phase , Cohesins
7.
Nat Methods ; 18(9): 1046-1055, 2021 09.
Article in English | MEDLINE | ID: mdl-34480151

ABSTRACT

Chromosome conformation capture (3C) assays are used to map chromatin interactions genome-wide. Chromatin interaction maps provide insights into the spatial organization of chromosomes and the mechanisms by which they fold. Hi-C and Micro-C are widely used 3C protocols that differ in key experimental parameters including cross-linking chemistry and chromatin fragmentation strategy. To understand how the choice of experimental protocol determines the ability to detect and quantify aspects of chromosome folding we have performed a systematic evaluation of 3C experimental parameters. We identified optimal protocol variants for either loop or compartment detection, optimizing fragment size and cross-linking chemistry. We used this knowledge to develop a greatly improved Hi-C protocol (Hi-C 3.0) that can detect both loops and compartments relatively effectively. In addition to providing benchmarked protocols, this work produced ultra-deep chromatin interaction maps using Micro-C, conventional Hi-C and Hi-C 3.0 for key cell lines used by the 4D Nucleome project.


Subject(s)
Chromatin/chemistry , Chromosomes, Human/chemistry , Cross-Linking Reagents/chemistry , Genetic Techniques , Cell Line , Chromatin/metabolism , Databases, Factual , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/physiology , Humans
8.
Curr Protoc ; 1(7): e198, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34286910

ABSTRACT

The intricate folding of chromatin enables living organisms to store genomic material in an extremely small volume while facilitating proper cell function. Hi-C is a chromosome conformation capture (3C)-based technology to detect pair-wise chromatin interactions genome-wide, and has become a benchmark tool to study genome organization. In Hi-C, chromatin conformation is first captured by chemical cross-linking of cells. Cells are then lysed and subjected to restriction enzyme digestion, before the ends of the resulting fragments are marked with biotin. Fragments within close 3D proximity are ligated, and the biotin label is used to selectively enrich for ligated junctions. Finally, isolated ligation products are prepared for high-throughput sequencing, which enables the mapping of pair-wise chromatin interactions genome-wide. Over the past decade, "next-generation" sequencing has become cheaper and easier to perform, enabling more interactions to be sampled to obtain higher resolution in chromatin interaction maps. Here, we provide an in-depth guide to performing an up-to-date Hi-C procedure on mammalian cell lines. These protocols include recent improvements that increase the resolution potential of the assay, namely by enhancing cross-linking and using a restriction enzyme cocktail. These improvements result in a versatile Hi-C procedure that enables the detection of genome folding features at a wide range of distances. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Fixation of nuclear conformation Basic Protocol 2: Chromosome conformation capture Basic Protocol 3: Hi-C sequencing library preparation.


Subject(s)
Chromatin , Chromosomes , Animals , Chromatin/genetics , Chromosomes/genetics , Genome , High-Throughput Nucleotide Sequencing , Nucleic Acid Conformation
9.
Mol Cell ; 78(3): 554-565.e7, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32213324

ABSTRACT

Over the past decade, 3C-related methods have provided remarkable insights into chromosome folding in vivo. To overcome the limited resolution of prior studies, we extend a recently developed Hi-C variant, Micro-C, to map chromosome architecture at nucleosome resolution in human ESCs and fibroblasts. Micro-C robustly captures known features of chromosome folding including compartment organization, topologically associating domains, and interactions between CTCF binding sites. In addition, Micro-C provides a detailed map of nucleosome positions and localizes contact domain boundaries with nucleosomal precision. Compared to Hi-C, Micro-C exhibits an order of magnitude greater dynamic range, allowing the identification of ∼20,000 additional loops in each cell type. Many newly identified peaks are localized along extrusion stripes and form transitive grids, consistent with their anchors being pause sites impeding cohesin-dependent loop extrusion. Our analyses comprise the highest-resolution maps of chromosome folding in human cells to date, providing a valuable resource for studies of chromosome organization.


Subject(s)
Chromosomes, Human/ultrastructure , Animals , CCCTC-Binding Factor/metabolism , Cells, Cultured , Chromatin/chemistry , Chromosomes, Mammalian/ultrastructure , Embryonic Stem Cells/cytology , Fibroblasts/cytology , Humans , Male , Mammals/genetics , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Signal-To-Noise Ratio
10.
Science ; 359(6376)2018 02 09.
Article in English | MEDLINE | ID: mdl-29348367

ABSTRACT

Mitotic chromosomes fold as compact arrays of chromatin loops. To identify the pathway of mitotic chromosome formation, we combined imaging and Hi-C analysis of synchronous DT40 cell cultures with polymer simulations. Here we show that in prophase, the interphase organization is rapidly lost in a condensin-dependent manner, and arrays of consecutive 60-kilobase (kb) loops are formed. During prometaphase, ~80-kb inner loops are nested within ~400-kb outer loops. The loop array acquires a helical arrangement with consecutive loops emanating from a central "spiral staircase" condensin scaffold. The size of helical turns progressively increases to ~12 megabases during prometaphase. Acute depletion of condensin I or II shows that nested loops form by differential action of the two condensins, whereas condensin II is required for helical winding.


Subject(s)
Chromosomes/chemistry , Chromosomes/genetics , Mitosis , Adenosine Triphosphatases/metabolism , Animals , Cell Line , Computational Biology , DNA-Binding Proteins/metabolism , Genomics , Interphase , Multiprotein Complexes/metabolism , Prometaphase , Prophase , Xenopus laevis
11.
Cell ; 169(5): 930-944.e22, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28525758

ABSTRACT

The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Furthermore, our data support that CTCF mediates transcriptional insulator function through enhancer blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding, these results provide new fundamental insights into the rules governing mammalian genome organization.


Subject(s)
Chromosomes, Mammalian/chemistry , Animals , CCCTC-Binding Factor , Cell Cycle , Chromatin/metabolism , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Indoleacetic Acids/pharmacology , Mice , Repressor Proteins/metabolism , Transcription, Genetic
12.
Methods ; 123: 56-65, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28435001

ABSTRACT

Chromosome conformation capture-based methods such as Hi-C have become mainstream techniques for the study of the 3D organization of genomes. These methods convert chromatin interactions reflecting topological chromatin structures into digital information (counts of pair-wise interactions). Here, we describe an updated protocol for Hi-C (Hi-C 2.0) that integrates recent improvements into a single protocol for efficient and high-resolution capture of chromatin interactions. This protocol combines chromatin digestion and frequently cutting enzymes to obtain kilobase (kb) resolution. It also includes steps to reduce random ligation and the generation of uninformative molecules, such as unligated ends, to improve the amount of valid intra-chromosomal read pairs. This protocol allows for obtaining information on conformational structures such as compartment and topologically associating domains, as well as high-resolution conformational features such as DNA loops.


Subject(s)
Chromosome Mapping/methods , Chromosomes/chemistry , DNA/chemistry , Genome, Human , Staining and Labeling/methods , Base Sequence , Biotin/chemistry , Cell Line , Chromosomes/ultrastructure , Cross-Linking Reagents/chemistry , Deoxyribonucleases, Type II Site-Specific/chemistry , Formaldehyde/chemistry , High-Throughput Nucleotide Sequencing , Humans
13.
Mol Cell ; 49(5): 773-82, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23473598

ABSTRACT

Mammalian genomes encode genetic information in their linear sequence, but appropriate expression of their genes requires chromosomes to fold into complex three-dimensional structures. Transcriptional control involves the establishment of physical connections among genes and regulatory elements, both along and between chromosomes. Recent technological innovations in probing the folding of chromosomes are providing new insights into the spatial organization of genomes and its role in gene regulation. It is emerging that folding of large complex chromosomes involves a hierarchy of structures, from chromatin loops that connect genes and enhancers to larger chromosomal domains and nuclear compartments. The larger these structures are along this hierarchy, the more stable they are within cells, while becoming more stochastic between cells. Here, we review the experimental and theoretical data on this hierarchy of structures and propose a key role for the recently discovered topologically associating domains.


Subject(s)
Genome , Animals , Cell Nucleus/metabolism , Chromatin , Chromosomes/genetics , Gene Expression Regulation , Humans , Models, Biological
14.
Methods ; 58(3): 268-76, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22652625

ABSTRACT

We describe a method, Hi-C, to comprehensively detect chromatin interactions in the mammalian nucleus. This method is based on Chromosome Conformation Capture, in which chromatin is crosslinked with formaldehyde, then digested, and re-ligated in such a way that only DNA fragments that are covalently linked together form ligation products. The ligation products contain the information of not only where they originated from in the genomic sequence but also where they reside, physically, in the 3D organization of the genome. In Hi-C, a biotin-labeled nucleotide is incorporated at the ligation junction, enabling selective purification of chimeric DNA ligation junctions followed by deep sequencing. The compatibility of Hi-C with next generation sequencing platforms makes it possible to detect chromatin interactions on an unprecedented scale. This advance gives Hi-C the power to both explore the biophysical properties of chromatin as well as the implications of chromatin structure for the biological functions of the nucleus. A massively parallel survey of chromatin interaction provides the previously missing dimension of spatial context to other genomic studies. This spatial context will provide a new perspective to studies of chromatin and its role in genome regulation in normal conditions and in disease.


Subject(s)
Chromatin/genetics , Chromosome Mapping/methods , Animals , Cells, Cultured , Cross-Linking Reagents , DNA/chemistry , DNA/genetics , DNA/isolation & purification , DNA Fragmentation , Epistasis, Genetic , Fixatives/chemistry , Formaldehyde/chemistry , Gene Library , Genome, Human , Humans , Nucleic Acid Conformation , Sequence Analysis, DNA , Tissue Fixation
15.
F1000 Biol Rep ; 4: 8, 2012.
Article in English | MEDLINE | ID: mdl-22500194

ABSTRACT

Recent advances in sequencing technologies have uncovered a world of RNAs that do not code for proteins, known as non-protein coding RNAs, that play important roles in gene regulation. Along with histone modifications and transcription factors, non-coding RNA is part of a layer of transcriptional control on top of the DNA code. This layer of components and their interactions specifically enables (or disables) the modulation of three-dimensional folding of chromatin to create a context for transcriptional regulation that underlies cell-specific transcription. In this perspective, we propose a structural and functional hierarchy, in which the DNA code, proteins and non-coding RNAs act as context creators to fold chromosomes and regulate genes.

16.
PLoS One ; 7(1): e29275, 2012.
Article in English | MEDLINE | ID: mdl-22238599

ABSTRACT

MicroRNA (miRNA) sponges are transcripts with repeated miRNA antisense sequences that can sequester miRNAs from endogenous targets. MiRNA sponges are valuable tools for miRNA loss-of-function studies both in vitro and in vivo. We developed a fast and flexible method to generate miRNA sponges and tested their efficiency in various assays. Using a single directional ligation reaction we generated sponges with 10 or more miRNA binding sites. Luciferase and AGO2-immuno precipitation (IP) assays confirmed effective binding of the miRNAs to the sponges. Using a GFP competition assay we showed that miR-19 sponges with central mismatches in the miRNA binding sites are efficient miRNA inhibitors while sponges with perfect antisense binding sites are not. Quantification of miRNA sponge levels suggests that this is at least in part due to degradation of the perfect antisense sponge transcripts. Finally, we provide evidence that combined inhibition of miRNAs of the miR-17∼92 cluster results in a more effective growth inhibition as compared to inhibition of individual miRNAs. In conclusion, we describe and validate a method to rapidly generate miRNA sponges for miRNA loss-of-function studies.


Subject(s)
Binding, Competitive , Cloning, Molecular/methods , MicroRNAs/antagonists & inhibitors , MicroRNAs/chemical synthesis , RNA Interference , RNA, Antisense/chemical synthesis , RNA, Antisense/metabolism , Animals , Base Sequence , Binding, Competitive/genetics , Binding, Competitive/physiology , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , MicroRNAs/chemistry , MicroRNAs/genetics , MicroRNAs/metabolism , RNA Interference/physiology , RNA, Antisense/genetics , Time Factors , Tumor Cells, Cultured
17.
Int J Radiat Oncol Biol Phys ; 83(4): 1220-6, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22208968

ABSTRACT

PURPOSE: We recently reported on the identification of the Fas-associated death domain (FADD) as a possible driver of the chromosome 11q13 amplicon and the association between increased FADD expression and disease-specific survival in advanced-stage laryngeal carcinoma. The aim of this study was to examine whether expression of FADD and its Ser194-phosphorylated isoform (pFADD) predicts local control in patients with early-stage glottic carcinoma primarily treated with radiotherapy only. METHODS AND MATERIALS: Immunohistochemical staining for FADD and pFADD was performed on pretreatment biopsy specimens of 92 patients with T1-T2 glottic squamous cell carcinoma primarily treated with radiotherapy between 1996 and 2005. Cox regression analysis was used to correlate expression levels with local control. RESULTS: High levels of pFADD were associated with significantly better local control (hazard ratio, 2.40; 95% confidence interval, 1.04-5.55; p = 0.040). FADD overexpression showed a trend toward better local control (hazard ratio, 3.656; 95% confidence interval, 0.853-15.663; p = 0.081). Multivariate Cox regression analysis showed that high pFADD expression was the best predictor of local control after radiotherapy. CONCLUSIONS: This study showed that expression of phosphorylated FADD is a new prognostic biomarker for better local control after radiotherapy in patients with early-stage glottic carcinomas.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/radiotherapy , Fas-Associated Death Domain Protein/metabolism , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/radiotherapy , Neoplasm Proteins/metabolism , Neoplasm Recurrence, Local/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Cortactin/metabolism , Cyclin D1/metabolism , Female , Glottis , Humans , Laryngeal Neoplasms/mortality , Laryngeal Neoplasms/pathology , Male , Middle Aged , Prognosis , Protein Isoforms/metabolism
18.
J Pathol ; 225(4): 609-17, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21953646

ABSTRACT

Hodgkin's lymphoma (HL) is a B cell-derived lymphoma characterized by a minority of malignant Hodgkin Reed-Sternberg (HRS) cells that have lost their normal B cell phenotype. Alterations in the cell cycle and apoptosis pathways might contribute to their resistance to apoptosis and sustained cell cycle progression. A key player in both cell cycle arrest and apoptosis is CDKN1A, encoding p21$^{{\rm{waf/cip1}}}$ (p21). P21 is regulated by p53 and can function as a cell cycle inhibitor when in the nucleus or as an apoptosis inhibitor when localized in the cytoplasm. We observed expression of p53, p21 and p-p21 in a variable number of HRS cells in 24 of 40 cases. Expression of miR-17 and miR-106a was detected in HRS cells of 10 HL cases. MiR-17/106b seed family members, CDKN1A RNA and p21 protein levels were variable in HL cell lines. We showed effective targeting of the CDKN1A 3' UTR by miR-17/106b in HL cell lines in a luciferase reporter assay and up-regulation of p21 protein levels upon anti-miR-17 treatment of KM-H2 cells. Functional studies indicated a p21-mediated G(1) arrest after miR-17/106b down-regulation in KM-H2, whereas no G(1) arrest was observed for U-HO1 and L428. This difference could not be explained by differences in the 3' UTR, the cellular location of p21 or expression variation during cell cycle progression. A strong correlation was observed for the miR-17/106b:CDKN1A ratio and the responsiveness to miR-17 inhibition, ie a low ratio in KM-H2 and an extremely high ratio in the two unresponsive HL cell lines. In conclusion, we show that miR-17/106b regulates p21 protein levels in HL and that the effect of miR-17/106b-mediated inhibition depends on the miRNA : target gene ratio. Thus, in HL high miR-17/106b expression contributes to a dysfunctional p53 pathway and thereby also to the malignant phenotype.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/genetics , Gene Expression Regulation, Neoplastic , Hodgkin Disease/genetics , MicroRNAs/genetics , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Flow Cytometry , Gene Targeting , Hodgkin Disease/metabolism , Hodgkin Disease/pathology , Humans , In Situ Hybridization/methods , MicroRNAs/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
19.
J Clin Invest ; 120(10): 3594-605, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20811155

ABSTRACT

Platinum-based chemotherapies such as cisplatin are used as first-line treatment for many cancers. Although there is often a high initial responsiveness, the majority of patients eventually relapse with platinum-resistant disease. For example, a subset of testicular cancer patients still die even though testicular cancer is considered a paradigm of cisplatin-sensitive solid tumors, but the mechanisms of chemoresistance remain elusive. Here, we have shown that one key determinant of cisplatin-resistance in testicular embryonal carcinoma (EC) is high cytoplasmic expression of the cyclin-dependent kinase (CDK) inhibitor p21. The EC component of the majority of refractory testicular cancer patients exhibited high cytoplasmic p21 expression, which protected EC cell lines against cisplatin-induced apoptosis via CDK2 inhibition. Localization of p21 in the cytoplasm was critical for cisplatin resistance, since relocalization of p21 to the nucleus by Akt inhibition sensitized EC cell lines to cisplatin. We also demonstrated in EC cell lines and human tumor tissue that high cytoplasmic p21 expression and cisplatin resistance of EC were inversely associated with the expression of Oct4 and miR-106b seed family members. Thus, targeting cytoplasmic p21, including by modulation of the Oct4/miR-106b/p21 pathway, may offer new strategies for the treatment of chemoresistant testicular and other types of cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Cyclin-Dependent Kinase Inhibitor p21/analysis , Cytoplasm/chemistry , Testicular Neoplasms/drug therapy , Apoptosis/drug effects , Cell Line, Tumor , Chromones/pharmacology , Cyclin-Dependent Kinase 2/analysis , Drug Resistance, Neoplasm , Humans , Male , MicroRNAs/physiology , Morpholines/pharmacology , Octamer Transcription Factor-3/physiology , Proto-Oncogene Proteins c-akt/physiology , Testicular Neoplasms/pathology
20.
Lab Invest ; 89(6): 708-16, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19349957

ABSTRACT

MicroRNAs (miRNAs) are an important class of small RNAs that regulate gene expression at the post-transcriptional level. It has become evident that miRNAs are involved in hematopoiesis, and that deregulation of miRNAs may give rise to hematopoietic malignancies. The aim of our study was to establish miRNA profiles of naïve, germinal center (GC) and memory B cells, and validate their expression patterns in normal lymphoid tissues. Quantitative (q) RT-PCR profiling revealed that several miRNAs were elevated in GC B cells, including miR-17-5p, miR-106a and miR-181b. One of the most abundant miRNAs in all three B-cell subsets analyzed was miR-150, with a more than 10-fold lower level in GC B cell as compared with the other two subsets. miRNA in situ hybridization (ISH) in tonsil tissue sections confirmed the findings from the profiling work. Interestingly, gradual decrease of miR-17-5p, miR-106a and miR-181b staining intensity from the dark to the light zone was observed in GC. A strong cytoplasmic staining of miR-150 was observed in a minority of the centroblasts in the dark zone of the GC. Inverse staining pattern of miR-150 against c-Myb and Survivin was observed in tonsil tissue sections, suggesting possible targeting of these genes by miR-150. In line with this, the experimental induction of miR-150 lead to reduced c-Myb, Survivin and Foxp1 expression levels in the Burkitt's lymphoma cell line, DG75. In conclusion, miRNA profiles of naïve, GC and memory B cells were established and validated by miRNA ISH. Within the GC cells, a marked difference was observed between the light and the dark zone.


Subject(s)
B-Lymphocyte Subsets/metabolism , Germinal Center/metabolism , MicroRNAs/metabolism , Palatine Tonsil/metabolism , Adolescent , B-Lymphocyte Subsets/immunology , Cell Line, Tumor , Child , Child, Preschool , Gene Expression Profiling , Germinal Center/immunology , Humans , In Situ Hybridization , Palatine Tonsil/immunology , Palatine Tonsil/pathology , Reverse Transcriptase Polymerase Chain Reaction , Tonsillitis/immunology , Tonsillitis/metabolism , Tonsillitis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...