Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(13): 11401-11420, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38918002

ABSTRACT

Structure-activity relationship studies of 2,8-disubstituted-1,5-naphthyridines, previously reported as potent inhibitors of Plasmodium falciparum (Pf) phosphatidylinositol-4-kinase ß (PI4K), identified 1,5-naphthyridines with basic groups at 8-position, which retained Plasmodium PI4K inhibitory activity but switched primary mode of action to the host hemoglobin degradation pathway through inhibition of hemozoin formation. These compounds showed minimal off-target inhibitory activity against the human phosphoinositide kinases and MINK1 and MAP4K kinases, which were associated with the teratogenicity and testicular toxicity observed in rats for the PfPI4K inhibitor clinical candidate MMV390048. A representative compound from the series retained activity against field isolates and lab-raised drug-resistant strains of Pf. It was efficacious in the humanized NSG mouse malaria infection model at a single oral dose of 32 mg/kg. This compound was nonteratogenic in the zebrafish embryo model of teratogenicity and has a low predicted human dose, indicating that this series has the potential to deliver a preclinical candidate for malaria.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Antimalarials , Hemeproteins , Naphthyridines , Plasmodium falciparum , Zebrafish , Plasmodium falciparum/drug effects , Animals , Naphthyridines/pharmacology , Naphthyridines/chemistry , Naphthyridines/chemical synthesis , Naphthyridines/therapeutic use , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , 1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , 1-Phosphatidylinositol 4-Kinase/metabolism , Humans , Structure-Activity Relationship , Hemeproteins/antagonists & inhibitors , Hemeproteins/metabolism , Mice , Rats , Malaria, Falciparum/drug therapy , Male , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis
2.
ACS Med Chem Lett ; 15(4): 463-469, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38628794

ABSTRACT

Toward addressing the cardiotoxicity liability associated with the antimalarial drug astemizole (AST, hERG IC50 = 0.0042 µM) and its derivatives, we designed and synthesized analogues based on compound 1 (Pf NF54 IC50 = 0.012 µM; hERG IC50 = 0.63 µM), our previously identified 3-trifluoromethyl-1,2,4-oxadiazole AST analogue. Compound 11 retained in vitro multistage antiplasmodium activity (ABS PfNF54 IC50 = 0.017 µM; gametocytes PfiGc/PfLGc IC50 = 1.24/1.39 µM, and liver-stage PbHepG2 IC50 = 2.30 µM), good microsomal metabolic stability (MLM CLint < 11 µL·min-1·mg-1, EH < 0.33), and solubility (150 µM). It shows a ∼6-fold and >6000-fold higher selectivity against human ether-á-go-go-related gene higher selectively potential over hERG relative to 1 and AST, respectively. Despite the excellent in vitro antiplasmodium activity profile, in vivo efficacy in the Plasmodium berghei mouse infection model was diminished, attributable to suboptimal oral bioavailability (F = 14.9%) at 10 mg·kg-1 resulting from poor permeability (log D7.4 = -0.82). No cross-resistance was observed against 44 common Pf mutant lines, suggesting activity via a novel mechanism of action.

3.
Antimicrob Agents Chemother ; 67(5): e0134522, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37010410

ABSTRACT

The translation of a preclinical antimalarial drug development candidate to the clinical phases should be supported by rational human dose selection. A model-informed strategy based on preclinical data, which incorporates pharmacokinetic-pharmacodynamic (PK-PD) properties with physiologically based pharmacokinetic (PBPK) modeling, is proposed to optimally predict an efficacious human dose and dosage regimen for the treatment of Plasmodium falciparum malaria. The viability of this approach was explored using chloroquine, which has an extensive clinical history for malaria treatment. First, the PK-PD parameters and the PK-PD driver of efficacy for chloroquine were determined through a dose fractionation study in the P. falciparum-infected humanized mouse model. A PBPK model for chloroquine was then developed for predicting the drug's PK profiles in a human population, from which the human PK parameters were determined. Lastly, the PK-PD parameters estimated in the P. falciparum-infected mouse model and the human PK parameters derived from the PBPK model were integrated to simulate the human dose-response relationships against P. falciparum, which subsequently allowed the determination of an optimized treatment. The predicted efficacious human dose and dosage regimen for chloroquine were comparable to those recommended clinically for the treatment of uncomplicated, drug-sensitive malaria, which provided supportive evidence for the proposed model-based approach to antimalarial human dose predictions.


Subject(s)
Antimalarials , Malaria, Falciparum , Animals , Mice , Humans , Chloroquine/pharmacology , Chloroquine/therapeutic use , Malaria, Falciparum/drug therapy , Antimalarials/pharmacology , Antimalarials/therapeutic use , Disease Models, Animal , Plasmodium falciparum
4.
Macromol Biosci ; 23(5): e2200518, 2023 05.
Article in English | MEDLINE | ID: mdl-36999404

ABSTRACT

Uncomplicated malaria is effectively treated with oral artemisinin-based combination therapy (ACT). Yet, there is an unmet clinical need for the intravenous treatment of the more fatal severe malaria. There is no combination intravenous therapy for uncomplicated due to the nonavailability of a water-soluble partner drug for the artemisinin, artesunate. The currently available treatment is a two-part regimen split into an intravenous artesunate followed by the conventional oral ACT . In a novel application of polymer therapeutics, the aqueous insoluble antimalarial lumefantrine is conjugated to a carrier polymer to create a new water-soluble chemical entity suitable for intravenous administration in a clinically relevant formulation . The conjugate is characterized by spectroscopic and analytical techniques, and the aqueous solubility of lumefantrine is determined to have increased by three orders of magnitude. Pharmacokinetic studies in mice indicate that there is a significant plasma release of lumefantrine and production its metabolite desbutyl-lumefantrine (area under the curve of metabolite is ≈10% that of the parent). In a Plasmodium falciparum malaria mouse model, parasitemia clearance is 50% higher than that of reference unconjugated lumefantrine. The polymer-lumefantrine shows potential for entering the clinic to meet the need for a one-course combination treatment for severe malaria.


Subject(s)
Antimalarials , Lumefantrine , Malaria , Polymers , Animals , Mice , Administration, Intravenous , Antimalarials/administration & dosage , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Antimalarials/toxicity , Area Under Curve , Disease Models, Animal , Drug Combinations , Lumefantrine/administration & dosage , Lumefantrine/analogs & derivatives , Lumefantrine/chemical synthesis , Lumefantrine/pharmacokinetics , Lumefantrine/therapeutic use , Lumefantrine/toxicity , Malaria/drug therapy , Mice, Inbred BALB C , Parasitemia , Plasmodium falciparum , Polymers/chemistry , Polymers/pharmacology , Polymers/therapeutic use , Solubility , Water/chemistry , Male
5.
J Med Chem ; 65(24): 16695-16715, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36507890

ABSTRACT

Iterative medicinal chemistry optimization of an ester-containing astemizole (AST) analogue 1 with an associated metabolic instability liability led to the identification of a highly potent 3-trifluoromethyl-1,2,4-oxadiazole analogue 23 (PfNF54 IC50 = 0.012 µM; PfK1 IC50 = 0.040 µM) displaying high microsomal metabolic stability (HLM CLint < 11.6 µL·min-1·mg-1) and > 1000-fold higher selectivity over hERG compared to AST. In addition to asexual blood stage activity, the compound also shows activity against liver and gametocyte life cycle stages and demonstrates in vivo efficacy in Plasmodium berghei-infected mice at 4 × 50 mg·kg-1 oral dose. Preliminary interrogation of the mode of action using live-cell microscopy and cellular heme speciation revealed that 23 could be affecting multiple processes in the parasitic digestive vacuole, with the possibility of a novel target at play in the organelles associated with it.


Subject(s)
Antimalarials , Malaria , Mice , Animals , Plasmodium berghei , Antimalarials/pharmacology , Antimalarials/therapeutic use , Astemizole/pharmacology , Astemizole/therapeutic use , Plasmodium falciparum/metabolism , Malaria/drug therapy , Malaria/parasitology , Disease Models, Animal
6.
Sci Transl Med ; 14(667): eabo7219, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36260689

ABSTRACT

Compounds acting on multiple targets are critical to combating antimalarial drug resistance. Here, we report that the human "mammalian target of rapamycin" (mTOR) inhibitor sapanisertib has potent prophylactic liver stage activity, in vitro and in vivo asexual blood stage (ABS) activity, and transmission-blocking activity against the protozoan parasite Plasmodium spp. Chemoproteomics studies revealed multiple potential Plasmodium kinase targets, and potent inhibition of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4Kß) and cyclic guanosine monophosphate-dependent protein kinase (PKG) was confirmed in vitro. Conditional knockdown of PI4Kß in ABS cultures modulated parasite sensitivity to sapanisertib, and laboratory-generated P. falciparum sapanisertib resistance was mediated by mutations in PI4Kß. Parasite metabolomic perturbation profiles associated with sapanisertib and other known PI4Kß and/or PKG inhibitors revealed similarities and differences between chemotypes, potentially caused by sapanisertib targeting multiple parasite kinases. The multistage activity of sapanisertib and its in vivo antimalarial efficacy, coupled with potent inhibition of at least two promising drug targets, provides an opportunity to reposition this pyrazolopyrimidine for malaria.


Subject(s)
Antimalarials , Plasmodium , Animals , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , MTOR Inhibitors , 1-Phosphatidylinositol 4-Kinase , Guanosine Monophosphate , Life Cycle Stages , TOR Serine-Threonine Kinases , Sirolimus , Mammals
7.
Front Pharmacol ; 13: 957690, 2022.
Article in English | MEDLINE | ID: mdl-36091789

ABSTRACT

The emergence of Plasmodium falciparum (Pf) parasite strains tolerant of the artemisinin component and resistant to the other drug component in artemisinin combination therapies (ACTs) used for treatment now markedly complicates malaria control. Thus, development of new combination therapies are urgently required. For the non-artemisinin component, the quinolone ester decoquinate (DQ) that possesses potent activities against blood stage Pf and acts on a distinct target, namely the Pf cytochrome bc 1 complex, was first considered. However, DQ has poor drug properties including high lipophilicity and exceedingly poor aqueous solubility (0.06 µg/ml), rendering it difficult to administer. Thus, DQ was chemically modified to provide the secondary amide derivative RMB005 and the quinoline O-carbamate derivatives RMB059 and RMB060. The last possesses sub-nanomolar activities against multidrug resistant blood stages of Pf, and P. berghei sporozoite liver stages. Here we present the results of ADME analyses in vitro and pharmacokinetic analyses using C57BL/6 mice. The amide RMB005 had a maximum mean whole blood concentration of 0.49 ± 0.02 µM following oral administration; however, the area under the curve (AUC), elimination half-life (t1/2) and bioavailability (BA) were not significantly better than those of DQ. Surprisingly, the quinoline O-carbamates which can be recrystallized without decomposition were rapidly converted into DQ in human plasma and blood samples. The maximum concentrations of DQ reached after oral administration of RMB059 and RMB060 were 0.23 ± 0.05 and 0.11 ± 0.01 µM, the DQ elimination half-lives were 4.79 ± 1.66 and 4.66 ± 1.16 h, and the DQ clearance were 19.40 ± 3.14 and 21.50 ± 3.38 respectively. Under these assay conditions, the BA of DQ could not be calculated Overall although RMB059 and -060 are labile in physiological medium with respect to the DQ parent, the potential to apply these as prodrugs is apparent from the current data coupled with their ease of preparation.

8.
Antimicrob Agents Chemother ; 66(4): e0219221, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35266826

ABSTRACT

Described here is a series of spiropyrimidinetrione (SPT) compounds with activity against Mycobacterium tuberculosis through inhibition of DNA gyrase. The SPT class operates via a novel mode of inhibition, which involves Mg2+-independent stabilization of the DNA cleavage complex with DNA gyrase and is thereby not cross-resistant with other DNA gyrase-inhibiting antibacterials, including fluoroquinolones. Compound 22 from the series was profiled broadly and showed in vitro cidality as well as intracellular activity against M. tuberculosis in macrophages. Evidence for the DNA gyrase mode of action was supported by inhibition of the target in a DNA supercoiling assay and elicitation of an SOS response seen in a recA reporter strain of M. tuberculosis. Pharmacokinetic properties of 22 supported evaluation of efficacy in an acute model of M. tuberculosis infection, where modest reduction in CFU numbers was seen. This work offers promise for deriving a novel drug class of tuberculosis agent without preexisting clinical resistance.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , DNA Gyrase/genetics , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Humans , Topoisomerase II Inhibitors/pharmacology , Tuberculosis/drug therapy
9.
Pharmaceutics ; 13(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34959347

ABSTRACT

Because of the need to replace the current clinical artemisinins in artemisinin combination therapies, we are evaluating fitness of amino-artemisinins for this purpose. These include the thiomorpholine derivative artemiside obtained in one scalable synthetic step from dihydroartemisinin (DHA) and the derived sulfone artemisone. We have recently shown that artemiside undergoes facile metabolism via the sulfoxide artemisox into artemisone and thence into the unsaturated metabolite M1; DHA is not a metabolite. Artemisox and M1 are now found to be approximately equipotent with artemiside and artemisone in vitro against asexual P. falciparum (Pf) blood stage parasites (IC50 1.5-2.6 nM). Against Pf NF54 blood stage gametocytes, artemisox is potently active (IC50 18.9 nM early-stage, 2.7 nM late-stage), although against the late-stage gametocytes, activity is expressed, like other amino-artemisinins, at a prolonged incubation time of 72 h. Comparative drug metabolism and pharmacokinetic (DMPK) properties were assessed via po and iv administration of artemiside, artemisox, and artemisone in a murine model. Following oral administration, the composite Cmax value of artemiside plus its metabolites artemisox and artemisone formed in vivo is some 2.6-fold higher than that attained following administration of artemisone alone. Given that efficacy of short half-life rapidly-acting antimalarial drugs such as the artemisinins is associated with Cmax, it is apparent that artemiside will be more active than artemisone in vivo, due to additive effects of the metabolites. As is evident from earlier data, artemiside indeed possesses appreciably greater efficacy in vivo against murine malaria. Overall, the higher exposure levels of active drug following administration of artemiside coupled with its synthetic accessibility indicate it is much the preferred drug for incorporation into rational new artemisinin combination therapies.

10.
Antimicrob Agents Chemother ; 65(8): e0099021, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34097488

ABSTRACT

As artemisinin combination therapies (ACTs) are compromised by resistance, we are evaluating triple combination therapies (TACTs) comprising an amino-artemisinin, a redox drug, and a third drug with a different mode of action. Thus, here we briefly review efficacy data on artemisone, artemiside, other amino-artemisinins, and 11-aza-artemisinin and conduct absorption, distribution, and metabolism and excretion (ADME) profiling in vitro and pharmacokinetic (PK) profiling in vivo via intravenous (i.v.) and oral (p.o.) administration to mice. The sulfamide derivative has a notably long murine microsomal half-life (t1/2 > 150 min), low intrinsic liver clearance and total plasma clearance rates (CLint 189.4, CLtot 32.2 ml/min/kg), and high relative bioavailability (F = 59%). Kinetics are somewhat similar for 11-aza-artemisinin (t1/2 > 150 min, CLint = 576.9, CLtot = 75.0 ml/min/kg), although bioavailability is lower (F = 14%). In contrast, artemether is rapidly metabolized to dihydroartemisinin (DHA) (t1/2 = 17.4 min) and eliminated (CLint = 855.0, CLtot = 119.7 ml/min/kg) and has low oral bioavailability (F) of 2%. While artemisone displays low t1/2 of <10 min and high CLint of 302.1, it displays a low CLtot of 42.3 ml/min/kg and moderate bioavailability (F) of 32%. Its active metabolite M1 displays a much-improved t1/2 of >150 min and a reduced CLint of 37.4 ml/min/kg. Artemiside has t1/2 of 12.4 min, CLint of 673.9, and CLtot of 129.7 ml/kg/min, likely a reflection of its surprisingly rapid metabolism to artemisone, reported here for the first time. DHA is not formed from any amino-artemisinin. Overall, the efficacy and PK data strongly support the development of selected amino-artemisinins as components of new TACTs.


Subject(s)
Antimalarials , Artemisinins , Animals , Antimalarials/therapeutic use , Artemether , Biological Availability , Mice
11.
J Med Chem ; 64(8): 5198-5215, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33844521

ABSTRACT

A novel series of antimalarial benzimidazole derivatives incorporating phenolic Mannich base side chains at the C2 position, which possess dual asexual blood and sexual stage activities, is presented. Structure-activity relationship studies revealed that the 1-benzylbenzimidazole analogues possessed submicromolar asexual blood and sexual stage activities in contrast to the 1H-benzimidazole analogues, which were only active against asexual blood stage (ABS) parasites. Further, the former demonstrated microtubule inhibitory activity in ABS parasites but more significantly in stage II/III gametocytes. In addition to being bona fide inhibitors of hemozoin formation, the 1H-benzimidazole analogues also showed inhibitory effects on microtubules. In vivo efficacy studies in Plasmodium berghei-infected mice revealed that the frontrunner compound 41 exhibited high efficacy (98% reduction in parasitemia) when dosed orally at 4 × 50 mg/kg. Generally, the compounds were noncytotoxic to mammalian cells.


Subject(s)
Antimalarials/chemistry , Benzimidazoles/chemistry , Hemeproteins/metabolism , Mannich Bases/chemistry , Microtubules/metabolism , Administration, Oral , Animals , Antimalarials/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Disease Models, Animal , Drug Design , Drug Resistance/drug effects , Drug Stability , Half-Life , Hemeproteins/drug effects , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/parasitology , Male , Mice , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Microtubules/drug effects , Plasmodium berghei/drug effects , Plasmodium berghei/physiology , Structure-Activity Relationship
12.
J Med Chem ; 64(4): 2291-2309, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33573376

ABSTRACT

A novel diazaspiro[3.4]octane series was identified from a Plasmodium falciparum whole-cell high-throughput screening campaign. Hits displayed activity against multiple stages of the parasite lifecycle, which together with a novel sp3-rich scaffold provided an attractive starting point for a hit-to-lead medicinal chemistry optimization and biological profiling program. Structure-activity-relationship studies led to the identification of compounds that showed low nanomolar asexual blood-stage activity (<50 nM) together with strong gametocyte sterilizing properties that translated to transmission-blocking activity in the standard membrane feeding assay. Mechanistic studies through resistance selection with one of the analogues followed by whole-genome sequencing implicated the P. falciparum cyclic amine resistance locus in the mode of resistance.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Spiro Compounds/pharmacology , Animals , Anopheles/drug effects , Antimalarials/chemical synthesis , Antimalarials/metabolism , Female , Germ Cells/drug effects , High-Throughput Screening Assays , Humans , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Rats , Spiro Compounds/chemical synthesis , Spiro Compounds/metabolism , Structure-Activity Relationship
14.
J Med Chem ; 63(21): 13013-13030, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33103428

ABSTRACT

A series of 2,4-disubstituted imidazopyridines, originating from a SoftFocus Kinase library, was identified from a high throughput phenotypic screen against the human malaria parasite Plasmodium falciparum. Hit compounds showed moderate asexual blood stage activity. During lead optimization, several issues were flagged such as cross-resistance against the multidrug-resistant K1 strain, in vitro cytotoxicity, and cardiotoxicity and were addressed through structure-activity and structure-property relationship studies. Pharmacokinetic properties were assessed in mice for compounds showing desirable in vitro activity, a selectivity window over cytotoxicity, and microsomal metabolic stability. Frontrunner compound 37 showed good exposure in mice combined with good in vitro activity against the malaria parasite, which translated into in vivo efficacy in the P. falciparum NOD-scid IL-2Rγnull (NSG) mouse model. Preliminary mechanistic studies suggest inhibition of hemozoin formation as a contributing mode of action.


Subject(s)
Antimalarials/chemistry , Hemeproteins/antagonists & inhibitors , Imidazoles/chemistry , Plasmodium falciparum/physiology , Protozoan Proteins/antagonists & inhibitors , Pyridines/chemistry , Animals , Antimalarials/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Disease Models, Animal , Half-Life , Hemeproteins/metabolism , Imidazoles/metabolism , Imidazoles/pharmacology , Imidazoles/therapeutic use , Life Cycle Stages/drug effects , Malaria/drug therapy , Malaria/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Microsomes, Liver/metabolism , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Structure-Activity Relationship
15.
Cell Death Discov ; 5: 60, 2019.
Article in English | MEDLINE | ID: mdl-30701092

ABSTRACT

Rhabdomyosarcoma (RMS) forms in skeletal muscle and is the most common soft tissue sarcoma in children and adolescents. Current treatment is associated with debilitating side effects and treatment outcomes for patients with metastatic disease are dismal. Recently, a novel binuclear palladacycle, AJ-5, was shown to exert potent cytotoxicity in melanoma and breast cancer and to present with negligible adverse effects in mice. This study investigates the anti-cancer activity of AJ-5 in alveolar and embryonal RMS. IC50 values of ≤ 0.2 µM were determined for AJ-5 and it displayed a favourable selectivity index of >2. Clonogenic and migration assays showed that AJ-5 inhibited the ability of RMS cells to survive and migrate, respectively. Western blotting revealed that AJ-5 induced levels of key DNA damage response proteins (γH2AX, p-ATM and p-Chk2) and the p38/MAPK stress pathway. This correlated with an upregulation of p21 and a G1 cell cycle arrest. Annexin V-FITC/propidium iodide staining revealed that AJ-5 induced apoptosis and necrosis. Apoptosis was confirmed by the detection of cleaved PARP and increased levels and activity of cleaved caspases-3, -7, -8 and -9. Furthermore, AJ-5 reduced autophagic flux as shown by reduced LC3II accumulation in the presence of bafilomycin A1 and a significant reduction in autophagosome flux J. Finally, pharmacokinetic studies in mice show that AJ-5 has a promising half-life and that its volume of distribution is high, its clearance low and its intraperitoneal absorption is good. Together these findings suggest that AJ-5 may be an effective chemotherapeutic with a desirable mechanism of action for treating drug-resistant and advanced sarcomas.

16.
J Med Chem ; 62(2): 1022-1035, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30562027

ABSTRACT

Structure-activity relationship studies involving N-aryl-3-trifluoromethyl pyrido[1,2- a]benzimidazoles (PBI) identified several compounds possessing potent in vitro activities against the asexual blood, liver, and gametocyte stages of the Plasmodium parasite with no cross-resistance to chloroquine. Frontrunner lead compounds with good in vitro absorption, distribution, metabolism, and excretion (ADME) profiles were subjected to in vivo proof-of-concept studies in NMRI mice harboring the rodent P. berghei infection. This led to the identification of compounds 10 and 49, effecting 98% and 99.93% reduction in parasitemia with mean survival days of 12 and 14, respectively, at an oral dose of 4 × 50 mg/kg. In vivo pharmacokinetics studies on 10 revealed slow absorption, low volume of distribution, and low clearance profiles. Furthermore, this series displayed a low propensity to inhibit the human ether-a-go-go-related gene (hERG) potassium ion channel whose inhibition is associated with cardiotoxicity.


Subject(s)
Antimalarials/therapeutic use , Benzimidazoles/chemistry , Malaria/drug therapy , Plasmodium/physiology , Animals , Antimalarials/chemistry , Antimalarials/metabolism , Antimalarials/pharmacology , Benzimidazoles/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Disease Models, Animal , Drug Design , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/metabolism , Half-Life , Hemeproteins/antagonists & inhibitors , Hemeproteins/metabolism , Life Cycle Stages/drug effects , Malaria/mortality , Malaria/pathology , Mice , Mice, Inbred C57BL , Plasmodium/drug effects , Structure-Activity Relationship , Survival Rate
17.
J Med Chem ; 61(20): 9371-9385, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30256636

ABSTRACT

A lead-optimization program around a 2,6-imidazopyridine scaffold was initiated based on the two early lead compounds, 1 and 2, that were shown to be efficacious in an in vivo humanized Plasmodium falciparum NODscidIL2Rγnull mouse malaria infection model. The observation of atypical dose-response curves when some compounds were tested against multidrug resistant malaria parasite strains guided the optimization process to define a chemical space that led to typical sigmoidal dose-response and complete kill of multidrug resistant parasites. After a structure and property analysis identified such a chemical space, compounds were prepared that displayed suitable activity, ADME, and safety profiles with respect to cytotoxicity and hERG inhibition.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Drug Resistance, Multiple/drug effects , Imidazoles/chemistry , Imidazoles/pharmacology , Plasmodium falciparum/drug effects , Pyridines/chemistry , Pyridines/pharmacology , Absorption, Physicochemical , Animals , Antimalarials/metabolism , Antimalarials/pharmacokinetics , Dose-Response Relationship, Drug , Imidazoles/metabolism , Imidazoles/pharmacokinetics , Mice , Pyridines/metabolism , Pyridines/pharmacokinetics , Structure-Activity Relationship , Tissue Distribution
18.
Article in English | MEDLINE | ID: mdl-30249687

ABSTRACT

The in vivo antimalarial efficacies of two phosphatidylinositol 4-kinase (PI4K) inhibitors, a 3,5-diaryl-2-aminopyrazine sulfoxide and its corresponding sulfone metabolite, were evaluated in the NOD-scid IL2Rγnull (NSG) murine malaria disease model of Plasmodium falciparum infection. We hypothesized that the sulfoxide would serve as a more soluble prodrug for the sulfone, which would lead to improved drug exposure with oral dosing. Both compounds had similar efficacy (90% effective dose [ED90], 0.1 mg kg-1 of body weight) across a quadruple-dose regimen. Pharmacokinetic profiling revealed rapid sulfoxide clearance via conversion to sulfone, with sulfone identified as the major active metabolite. When the sulfoxide was dosed, the exposure of the sulfone achieved was as much as 2.9-fold higher than when the sulfone was directly dosed, thereby demonstrating that the sulfoxide served as an effective prodrug for the treatment of malaria.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Parasitemia/drug therapy , Prodrugs/pharmacology , Pyrazines/pharmacology , Sulfones/pharmacology , Sulfoxides/pharmacology , 1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , 1-Phosphatidylinositol 4-Kinase/genetics , 1-Phosphatidylinositol 4-Kinase/metabolism , Animals , Antimalarials/blood , Antimalarials/chemical synthesis , Antimalarials/pharmacokinetics , Biotransformation , Disease Models, Animal , Dose-Response Relationship, Drug , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythrocytes/parasitology , Gene Expression , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Parasitemia/pathology , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/growth & development , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Pyrazines/blood , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Sulfones/blood , Sulfones/chemical synthesis , Sulfones/pharmacokinetics , Sulfoxides/blood , Sulfoxides/chemical synthesis , Sulfoxides/pharmacokinetics , Treatment Outcome
19.
J Med Chem ; 61(13): 5692-5703, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29889526

ABSTRACT

A novel 2,8-disubstituted-1,5-naphthyridine hit compound stemming from the open access Medicines for Malaria Venture Pathogen Box formed a basis for a hit-to-lead medicinal chemistry program. Structure-activity relationship investigations resulted in compounds with potent antiplasmodial activity against both chloroquine sensitive (NF54) and multidrug resistant (K1) strains of the human malaria parasite Plasmodium falciparum. In the humanized P. falciparum mouse efficacy model, one of the frontrunner compounds showed in vivo efficacy at an oral dose of 4 × 50 mg·kg-1. In vitro mode-of-action studies revealed Plasmodium falciparum phosphatidylinositol-4-kinase as the target.


Subject(s)
1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Malaria/drug therapy , Naphthyridines/chemistry , Naphthyridines/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , 1-Phosphatidylinositol 4-Kinase/chemistry , Animals , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Disease Models, Animal , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Mice , Models, Molecular , Naphthyridines/pharmacokinetics , Naphthyridines/therapeutic use , Plasmodium falciparum/physiology , Protein Conformation , Structure-Activity Relationship , Tissue Distribution
20.
Article in English | MEDLINE | ID: mdl-29866868

ABSTRACT

The emergence of resistance toward artemisinin combination therapies (ACTs) by the malaria parasite Plasmodium falciparum has the potential to severely compromise malaria control. Therefore, the development of new artemisinins in combination with new drugs that impart activities toward both intraerythrocytic proliferative asexual and transmissible gametocyte stages, in particular, those of resistant parasites, is urgently required. We define artemisinins as oxidant drugs through their ability to oxidize reduced flavin cofactors of flavin disulfide reductases critical for maintaining redox homeostasis in the malaria parasite. Here we compare the activities of 10-amino artemisinin derivatives toward the asexual and gametocyte stages of P. falciparum parasites. Of these, artemisone and artemiside inhibited asexual and gametocyte stages, particularly stage V gametocytes, in the low-nanomolar range. Further, treatment of both early and late gametocyte stages with artemisone or artemiside combined with the pro-oxidant redox partner methylene blue displayed notable synergism. These data suggest that modulation of redox homeostasis is likely an important druggable process, particularly in gametocytes, and this finding thereby enhances the prospect of using combinations of oxidant and redox drugs for malaria control.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Plasmodium falciparum/drug effects , Drug Synergism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Plasmodium falciparum/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL