Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
ACS Cent Sci ; 6(10): 1772-1788, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33145414

ABSTRACT

The development of a fluorescent probe for a specific metal has required exquisite design, synthesis, and optimization of fluorogenic molecules endowed with chelating moieties with heteroatoms. These probes are generally chelation- or reactivity-based. Catalysis-based fluorescent probes have the potential to be more sensitive; however, catalytic methods with a biocompatible fluorescence turn-on switch are rare. Here, we have exploited ligand-accelerated metal catalysis to repurpose known fluorescent probes for different metals, a new approach in probe development. We used the cleavage of allylic and propargylic ethers as platforms that were previously designed for palladium. After a single experiment that combinatorially examined >800 reactions with two variables (metal and ligand) for each ether, we discovered a platinum- or copper-selective method with the ligand effect of specific phosphines. Both metal-ligand systems were previously unknown and afforded strong signals owing to catalytic turnover. The fluorometric technologies were applied to geological, pharmaceutical, serum, and live cell samples and were used to discover that platinum accumulates in lysosomes in cisplatin-resistant cells in a manner that appears to be independent of copper distribution. The use of ligand-accelerated catalysis may present a new blueprint for engineering metal selectivity in probe development.

2.
J Cereb Blood Flow Metab ; 39(5): 913-925, 2019 05.
Article in English | MEDLINE | ID: mdl-29192562

ABSTRACT

Decreased cerebral blood flow (CBF) after cardiac arrest (CA) contributes to secondary ischemic injury in infants and children. We previously reported cortical hypoperfusion with tissue hypoxia early in a pediatric rat model of asphyxial CA. In order to identify specific alterations as potential therapeutic targets to improve cortical hypoperfusion post-CA, we characterize the CBF alterations at the cortical microvascular level in vivo using multiphoton microscopy. We hypothesize that microvascular constriction and disturbances of capillary red blood cell (RBC) flow contribute to cortical hypoperfusion post-CA. After resuscitation from 9 min asphyxial CA, transient dilation of capillaries and venules at 5 min was followed by pial arteriolar constriction at 30 and 60 min (19.6 ± 1.3, 19.3 ± 1.2 µm at 30, 60 min vs. 22.0 ± 1.2 µm at baseline, p < 0.05). At the capillary level, microcirculatory disturbances were highly heterogeneous, with RBC stasis observed in 25.4% of capillaries at 30 min post-CA. Overall, the capillary plasma mean transit time was increased post-CA by 139.7 ± 51.5%, p < 0.05. In conclusion, pial arteriolar constriction, the no-reflow phenomenon and increased plasma transit time were observed post-CA. Our results detail the microvascular disturbances in a pediatric asphyxial CA model and provide a powerful platform for assessing specific vascular-targeted therapies.


Subject(s)
Brain/blood supply , Cerebrovascular Circulation , Heart Arrest/complications , Microcirculation , No-Reflow Phenomenon/etiology , Animals , Brain/physiopathology , Heart Arrest/physiopathology , Male , No-Reflow Phenomenon/physiopathology , Rats, Sprague-Dawley , Vasodilation
3.
J Neurosci Methods ; 311: 436-441, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30292824

ABSTRACT

BACKGROUND: The glymphatic system is a proposed pathway for clearance of proteins and macromolecules from brain, and disrupted glymphatic flux is implicated in neurological disease. We capitalized on colorimetric, fluorescent, and protein-binding properties of Evans blue to evaluate glymphatic flux. NEW METHOD: Twenty-five µL of 1% Evans blue-labeled albumin (EBA) in artificial cerebrospinal fluid (aCSF) was injected into the intracisternal space of anesthetized postnatal day 17 rats. Serum was collected at various time points after injection (n = 37) and EBA was measured spectrophotometrically. In separate rats (n = 3), a cranial window was placed over the parietal cortex and EBA transit was evaluated using in vivo multiphoton microscopy. Separate rats (n = 6) were processed for immunohistochemistry to examine localization of EBA. In some rats, intracranial pressure (ICP) was increased via intracisternal injection of aCSF. RESULTS: EBA was detected in serum as early as 30 min, was maximal at 4 h, and was undetectable at 72 h after intracisternal injection. Using intra-vital microscopy and immunohistochemistry EBA could be tracked from CSF to perivascular locations. Consistent with removal via glymphatic flux, increasing ICP to 40 mmHg accelerated transit of EBA from CSF to blood. COMPARISON WITH EXISTING METHODS: Transit of EBA from CSF to serum could be quantified spectrophotometrically without radioactive labeling. Glymphatic flux could also be qualitatively evaluated using EBA fluorescence. CONCLUSION: We present a novel technique for simultaneous quantitative and qualitative evaluation of glymphatic flux in rats.


Subject(s)
Brain/metabolism , Evans Blue , Glymphatic System/metabolism , Immunohistochemistry/methods , Serum , Spectrophotometry/methods , Animals , Brain Chemistry , Cerebrospinal Fluid/chemistry , Cerebrospinal Fluid/metabolism , Glymphatic System/chemistry , Rats, Sprague-Dawley
4.
BMC Genomics ; 19(1): 649, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30176818

ABSTRACT

BACKGROUND: Hydractinia symbiolongicarpus, a colonial cnidarian, is a tractable model system for many cnidarian-specific and general biological questions. Until recently, tests of gene function in Hydractinia have relied on laborious forward genetic approaches, randomly integrated transgenes, or transient knockdown of mRNAs. RESULTS: Here, we report the use of CRISPR/Cas9 genome editing to generate targeted genomic insertions in H. symbiolonigcarpus. We used CRISPR/Cas9 to promote homologous recombination of two fluorescent reporters, eGFP and tdTomato, into the Eukaryotic elongation factor 1 alpha (Eef1a) locus. We demonstrate that the transgenes are expressed ubiquitously and are stable over two generations of breeding. We further demonstrate that CRISPR/Cas9 genome editing can be used to mark endogenous proteins with FLAG or StrepII-FLAG affinity tags to enable in vivo and ex vivo protein studies. CONCLUSIONS: This is the first account of CRISPR/Cas9 mediated knockins in Hydractinia and the first example of the germline transmission of a CRISPR/Cas9 inserted transgene in a cnidarian. The ability to precisely insert exogenous DNA into the Hydractinia genome will enable sophisticated genetic studies and further development of functional genomics tools in this understudied cnidarian model.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Knock-In Techniques , Hydrozoa/genetics , Peptide Elongation Factor 1/genetics , Animals , Genetic Vectors , Homologous Recombination , Hydrozoa/growth & development , Transgenes
5.
Curr Protoc Cytom ; 86(1): e38, 2018 10.
Article in English | MEDLINE | ID: mdl-30005145

ABSTRACT

Biologic tissues are generally opaque due to optical properties that result in scattering and absorption of light. Preparation of tissues for optical microscopy often involves sectioning to a thickness of 50-100 µm, the practical limits of light penetration and recovery. A researcher who wishes to image a whole tissue must acquire potentially hundreds of individual sections before rendering them into a three-dimensional volume. Clearing removes strongly light-scattering and light-absorbing components of a tissue and equalizes the refractive index of the imaging medium to that of the tissue. After clearing, the maximum depth of imaging is often defined by the microscope optics rather than the tissue. Such visibility enables the interrogation of whole tissues and even animals without the need to section. Researchers can study a biological process in the context of its three-dimensional environment, identify rare events in large volumes of tissues, and trace cells and cell-cell interactions over large distances. This article describes four popular clearing protocols that are relevant to a wide variety of scenarios across biologic disciplines: CUBIC, CLARITY, 3DISCO, and SeeDB. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Imaging, Three-Dimensional/methods , Animals , Decision Trees , Fluorescence , Mice , Solvents , Staining and Labeling
6.
PLoS One ; 12(7): e0180486, 2017.
Article in English | MEDLINE | ID: mdl-28686653

ABSTRACT

Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.


Subject(s)
Brain/diagnostic imaging , Encephalitis Virus, Venezuelan Equine/pathogenicity , Encephalomyelitis, Venezuelan Equine/diagnostic imaging , Microscopy, Confocal/methods , Animals , Brain/physiopathology , Brain/virology , Callithrix/virology , Encephalitis Virus, Venezuelan Equine/isolation & purification , Encephalomyelitis, Venezuelan Equine/diagnosis , Encephalomyelitis, Venezuelan Equine/physiopathology , Encephalomyelitis, Venezuelan Equine/virology , Humans , Mice , Neuroimaging/methods , Rats , Virus Replication
7.
Cancer Immunol Res ; 5(6): 493-502, 2017 06.
Article in English | MEDLINE | ID: mdl-28468916

ABSTRACT

Hepatocellular carcinoma (HCC) patients with reduced natural killer (NK)-cell numbers and function have been shown to have a poor disease outcome. Mechanisms underlying NK-cell deficiency and dysfunction in HCC patients remain largely unresolved. α-Fetoprotein (AFP) is an oncofetal antigen produced by HCC. Previous studies demonstrated that tumor-derived AFP (tAFP) can indirectly impair NK-cell activity by suppressing dendritic cell function. However, a direct tAFP effect on NK cells remains unexplored. The purpose of this study was to examine the ability of cord blood-derived AFP (nAFP) and that of tAFP to directly modulate human NK-cell activity and longevity in vitro Short-term exposure to tAFP and, especially, nAFP proteins induced a unique proinflammatory, IL2-hyperresponsive phenotype in NK cells as measured by IL1ß, IL6, and TNF secretion, CD69 upregulation, and enhanced tumor cell killing. In contrast, extended coculture with tAFP, but not nAFP, negatively affected long-term NK-cell viability. NK-cell activation was directly mediated by the AFP protein itself, whereas their viability was affected by hydrophilic components within the low molecular mass cargo that copurified with tAFP. Identification of the distinct impact of circulating tAFP on NK-cell function and viability may be crucial to developing a strategy to ameliorate HCC patient NK-cell functional deficits. Cancer Immunol Res; 5(6); 493-502. ©2017 AACR.


Subject(s)
Carcinoma, Hepatocellular/immunology , Killer Cells, Natural/immunology , Liver Neoplasms/immunology , alpha-Fetoproteins/immunology , Cell Death , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , Cytokines/immunology , Humans
8.
J Clin Invest ; 126(8): 2805-20, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27348586

ABSTRACT

The immune response against transplanted allografts is one of the most potent reactions mounted by the immune system. The acute rejection response has been attributed to donor dendritic cells (DCs), which migrate to recipient lymphoid tissues and directly activate alloreactive T cells against donor MHC molecules. Here, using a murine heart transplant model, we determined that only a small number of donor DCs reach lymphoid tissues and investigated how this limited population of donor DCs efficiently initiates the alloreactive T cell response that causes acute rejection. In our mouse model, efficient passage of donor MHC molecules to recipient conventional DCs (cDCs) was dependent on the transfer of extracellular vesicles (EVs) from donor DCs that migrated from the graft to lymphoid tissues. These EVs shared characteristics with exosomes and were internalized or remained attached to the recipient cDCs. Recipient cDCs that acquired exosomes became activated and triggered full activation of alloreactive T cells. Depletion of recipient cDCs after cardiac transplantation drastically decreased presentation of donor MHC molecules to directly alloreactive T cells and delayed graft rejection in mice. These findings support a key role for transfer of donor EVs in the generation of allograft-targeting immune responses and suggest that interrupting this process has potential to dampen the immune response to allografts.


Subject(s)
Allografts/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Exosomes/metabolism , Immune Tolerance/immunology , Animals , Cell Movement , Graft Rejection , Graft Survival , Heart Transplantation , Major Histocompatibility Complex/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Skin Transplantation , Spleen/metabolism , T-Lymphocytes/cytology , Transplantation, Homologous
9.
Biochem J ; 473(12): 1821-30, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27099338

ABSTRACT

Lysine acetylation is tightly coupled to the nutritional status of the cell, as the availability of its cofactor, acetyl-CoA, fluctuates with changing metabolic conditions. Recent studies have demonstrated that acetyl-CoA levels act as an indicator of cellular nourishment, and increased abundance of this metabolite can block the induction of cellular recycling programmes. In the present study we investigated the cross-talk between mitochondrial metabolic pathways, acetylation and autophagy, using chemical inducers of mitochondrial acetyl-CoA production. Treatment of cells with α-lipoic acid (αLA), a cofactor of the pyruvate dehydrogenase complex, led to the unexpected hyperacetylation of α-tubulin in the cytosol. This acetylation was blocked by pharmacological inhibition of mitochondrial citrate export (a source for mitochondria-derived acetyl-CoA in the cytosol), was dependent on the α-tubulin acetyltransferase (αTAT) and was coupled to a loss in function of the cytosolic histone deacetylase, HDAC6. We further demonstrate that αLA slows the flux of substrates through autophagy-related pathways, and severely limits the ability of cells to remove depolarized mitochondria through PTEN-associated kinase 1 (PINK1)-mediated mitophagy.


Subject(s)
Mitochondria/metabolism , Thioctic Acid/pharmacology , Tubulin/metabolism , Acetyl Coenzyme A/metabolism , Acetylation/drug effects , Acetyltransferases/metabolism , Animals , Autophagy/drug effects , COS Cells , Chlorocebus aethiops , Hep G2 Cells , Histone Deacetylase Inhibitors/pharmacology , Humans , Microscopy, Confocal , Mitochondria/drug effects , Signal Transduction/drug effects
10.
J Exp Med ; 211(10): 2075-84, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25200028

ABSTRACT

Oropharyngeal candidiasis (OPC) is an opportunistic fungal infection caused by Candida albicans. OPC is frequent in HIV/AIDS, implicating adaptive immunity. Mice are naive to Candida, yet IL-17 is induced within 24 h of infection, and susceptibility is strongly dependent on IL-17R signaling. We sought to identify the source of IL-17 during the early innate response to candidiasis. We show that innate responses to Candida require an intact TCR, as SCID, IL-7Rα(-/-), and Rag1(-/-) mice were susceptible to OPC, and blockade of TCR signaling by cyclosporine induced susceptibility. Using fate-tracking IL-17 reporter mice, we found that IL-17 is produced within 1-2 d by tongue-resident populations of γδ T cells and CD3(+)CD4(+)CD44(hi)TCRß(+)CCR6(+) natural Th17 (nTh17) cells, but not by TCR-deficient innate lymphoid cells (ILCs) or NK cells. These cells function redundantly, as TCR-ß(-/-) and TCR-δ(-/-) mice were both resistant to OPC. Whereas γδ T cells were previously shown to produce IL-17 during dermal candidiasis and are known to mediate host defense at mucosal surfaces, nTh17 cells are poorly understood. The oral nTh17 population expanded rapidly after OPC, exhibited high TCR-ß clonal diversity, and was absent in Rag1(-/-), IL-7Rα(-/-), and germ-free mice. These findings indicate that nTh17 and γδ T cells, but not ILCs, are key mucosal sentinels that control oral pathogens.


Subject(s)
Candida albicans/immunology , Candidiasis/prevention & control , Immunity, Innate/immunology , Mouth/immunology , Th17 Cells/immunology , Animals , Candidiasis/immunology , Flow Cytometry , Interleukin-23/deficiency , Mice , Mice, Knockout , Microscopy, Confocal , Mouth/cytology , Mouth/microbiology , Real-Time Polymerase Chain Reaction , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Interleukin-17/deficiency , Receptors, Interleukin-17/metabolism
11.
J Vis Exp ; (76)2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23852318

ABSTRACT

Cryo-electron tomography (cryoET) allows 3D visualization of cellular structures at molecular resolution in a close-to-physiological state(1). However, direct visualization of individual viral complexes in their host cellular environment with cryoET is challenging(2), due to the infrequent and dynamic nature of viral entry, particularly in the case of HIV-1. While time-lapse live-cell imaging has yielded a great deal of information about many aspects of the life cycle of HIV-1(3-7), the resolution afforded by live-cell microscopy is limited (~200 nm). Our work was aimed at developing a correlation method that permits direct visualization of early events of HIV-1 infection by combining live-cell fluorescent light microscopy, cryo-fluorescent microscopy, and cryoET. In this manner, live-cell and cryo-fluorescent signals can be used to accurately guide the sampling in cryoET. Furthermore, structural information obtained from cryoET can be complemented with the dynamic functional data gained through live-cell imaging of fluorescent labeled target. In this video article, we provide detailed methods and protocols for structural investigation of HIV-1 and host-cell interactions using 3D correlative high-speed live-cell imaging and high-resolution cryoET structural analysis. HeLa cells infected with HIV-1 particles were characterized first by confocal live-cell microscopy, and the region containing the same viral particle was then analyzed by cryo-electron tomography for 3D structural details. The correlation between two sets of imaging data, optical imaging and electron imaging, was achieved using a home-built cryo-fluorescence light microscopy stage. The approach detailed here will be valuable, not only for study of virus-host cell interactions, but also for broader applications in cell biology, such as cell signaling, membrane receptor trafficking, and many other dynamic cellular processes.


Subject(s)
Cryoelectron Microscopy/methods , HIV Infections/pathology , HIV Infections/virology , HIV-1/ultrastructure , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , HeLa Cells , Humans
12.
J Cell Sci ; 125(Pt 23): 5745-57, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23015593

ABSTRACT

Mitochondrial fission and fusion cycles are integrated with cell cycle progression. In this paper, we demonstrate that the inhibition of mitochondrial fission protein Drp1 causes an unexpected delay in G2/M cell cycle progression and aneuploidy. In investigating the underlying molecular mechanism, we revealed that inhibiting Drp1 triggers replication stress, which is mediated by a hyperfused mitochondrial structure and unscheduled expression of cyclin E in the G2 phase. This persistent replication stress then induces an ATM-dependent activation of the G2 to M transition cell cycle checkpoint. Knockdown of ATR, an essential kinase in preventing replication stress, significantly enhanced DNA damage and cell death of Drp1-deficienct cells. Persistent mitochondrial hyperfusion also induces centrosomal overamplification and chromosomal instability, which are causes of aneuploidy. Analysis using cells depleted of mitochondrial DNA revealed that these events are not mediated by the defects in mitochondrial ATP production and reactive oxygen species (ROS) generation. Thus dysfunctional mitochondrial fission directly induces genome instability by replication stress, which then initiates the DNA damage response. Our findings provide a novel mechanism that contributes to the cellular dysfunction and diseases associated with altered mitochondrial dynamics.


Subject(s)
Aneuploidy , Cell Cycle/physiology , DNA Replication/physiology , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , Cell Cycle/genetics , Cell Division/genetics , Cell Division/physiology , Cell Line, Tumor , Cell Proliferation , DNA Replication/genetics , Dynamins , Fluorescent Antibody Technique , G2 Phase/genetics , G2 Phase/physiology , GTP Phosphohydrolases/genetics , Humans , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/physiology , Microscopy, Confocal , Microtubule-Associated Proteins/genetics , Mitochondrial Proteins/genetics , RNA Interference , Superoxides/metabolism
13.
J Proteome Res ; 11(10): 4983-91, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-22909323

ABSTRACT

ATM is a protein kinase that initiates a well-characterized signaling cascade in cells exposed to ionizing radiation (IR). However, the role for ATM in coordinating critical protein interactions and subsequent exchanges within DNA damage response (DDR) complexes is unknown. We combined SILAC-based tandem mass spectrometry and a subcellular fractionation protocol to interrogate the proteome of irradiated cells treated with or without the ATM kinase inhibitor KU55933. We developed an integrative network analysis to identify and prioritize proteins that were responsive to KU55933, specifically in chromatin, and that were also enriched for physical interactions with known DNA repair proteins. This analysis identified 53BP1 and annexin A1 (ANXA1) as strong candidates. Using fluorescence recovery after photobleaching, we found that the exchange of GFP-53BP1 in DDR complexes decreased with KU55933. Further, we found that ANXA1 knockdown sensitized cells to IR via a mechanism that was not potentiated by KU55933. Our study reveals a role for ATM kinase activity in the dynamic exchange of proteins in DDR complexes and identifies a role for ANXA1 in cellular radioprotection.


Subject(s)
Annexin A1/metabolism , Cell Cycle Proteins/metabolism , DNA Damage , DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Annexin A1/genetics , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/antagonists & inhibitors , Cell Line , Cell Proliferation , Cell Survival/radiation effects , Chromatin/metabolism , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/antagonists & inhibitors , Gene Knockdown Techniques , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Morpholines/pharmacology , Protein Binding , Protein Interaction Maps , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proteomics , Pyrones/pharmacology , RNA Interference , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor p53-Binding Protein 1
14.
J Biomech ; 45(5): 762-71, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22305290

ABSTRACT

Gradual collagen recruitment has been hypothesized as the underlying mechanism for the mechanical stiffening with increasing stress in arteries. In this work, we investigated this hypothesis in eight rabbit carotid arteries by directly measuring the distribution of collagen recruitment stretch under increasing circumferential loading using a custom uniaxial (UA) extension device combined with a multi-photon microscope (MPM). This approach allowed simultaneous mechanical testing and imaging of collagen fibers without traditional destructive fixation methods. Fiber recruitment was quantified from 3D rendered MPM images, and fiber orientation was measured in projected stacks of images. Collagen recruitment was observed to initiate at a finite strain, corresponding to a sharp increase in the measured mechanical stiffness, confirming the previous hypothesis and motivating the development of a new constitutive model to capture this response. Previous constitutive equations for the arterial wall have modeled the collagen contribution with either abrupt recruitment at zero strain, abrupt recruitment at finite strain or as gradual recruitment beginning at infinitesimal strain. Based on our experimental data, a new combined constitutive model was presented in which fiber recruitment begins at a finite strain with activation stretch represented by a probability distribution function. By directly including this recruitment data, the collagen contribution was modeled using a simple Neo-Hookean equation. As a result, only two phenomenological material constants were required from the fit to the stress stretch data. Three other models for the arterial wall were then compared with these results. The approach taken here was successful in combining stress-strain analysis with simultaneous microstructural imaging of collagen recruitment and orientation, providing a new approach by which underlying fiber architecture may be quantified and included in constitutive equations.


Subject(s)
Biomechanical Phenomena/physiology , Carotid Arteries/physiology , Collagen/physiology , Models, Biological , Animals , Carotid Arteries/cytology , Carotid Arteries/ultrastructure , Collagen/ultrastructure , Rabbits
15.
Blood ; 119(3): 756-66, 2012 Jan 19.
Article in English | MEDLINE | ID: mdl-22031862

ABSTRACT

Dendritic cells (DCs) are the most potent APCs. Whereas immature DCs down-regulate T-cell responses to induce/maintain immunologic tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact, and vesicle exchange. Transfer of nanovesicles (< 100 nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle miRNAs and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, a hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, because they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and posttranscriptional regulation between DCs.


Subject(s)
Cell Communication , Dendritic Cells/metabolism , Endosomes/metabolism , Exosomes/genetics , MicroRNAs/physiology , Animals , Antigen Presentation , Biomarkers/metabolism , Cytosol/metabolism , Dendritic Cells/cytology , Exosomes/metabolism , Gene Expression Profiling , Membrane Fusion , Mice , Oligonucleotide Array Sequence Analysis
16.
Structure ; 19(11): 1573-81, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-22078557

ABSTRACT

Cryo-electron tomography (cryoET) allows 3D visualization of cellular structures at molecular resolution in a close-to-native state and therefore has the potential to help elucidate early events of HIV-1 infection in host cells. However, structural details of infecting HIV-1 have not been observed, due to technological challenges in working with rare and dynamic HIV-1 particles in human cells. Here, we report structural analysis of HIV-1 and host-cell interactions by means of a correlative high-speed 3D live-cell-imaging and cryoET method. Using this method, we showed under near-native conditions that intact hyperstable mutant HIV-1 cores are released into the cytoplasm of host cells. We further obtained direct evidence to suggest that a hyperstable mutant capsid, E45A, showed delayed capsid disassembly compared to the wild-type capsid. Together, these results demonstrate the advantages of our correlative live-cell and cryoET approach for imaging dynamic processes, such as viral infection.


Subject(s)
Cryoelectron Microscopy/instrumentation , Electron Microscope Tomography/instrumentation , HIV Infections/virology , HIV-1/physiology , Host-Pathogen Interactions , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , HIV-1/genetics , HeLa Cells , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/metabolism , Humans , Mutation, Missense , Single-Cell Analysis/methods , Virion/metabolism
17.
PLoS One ; 6(1): e15943, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21246055

ABSTRACT

The ubiquitous fungus Aspergillus fumigatus is associated with chronic diseases such as invasive pulmonary aspergillosis in immunosuppressed patients and allergic bronchopulmonary aspergillosis (ABPA) in patients with cystic fibrosis or severe asthma. Because of constant exposure to this fungus, it is critical for the host to exercise an immediate and decisive immune response to clear fungal spores to ward off disease. In this study, we observed that rapidly after infection by A. fumigatus, alveolar macrophages predominantly express Arginase 1 (Arg1), a key marker of alternatively activated macrophages (AAMs). The macrophages were also found to express Ym1 and CD206 that are also expressed by AAMs but not NOS2, which is expressed by classically activated macrophages. The expression of Arg1 was reduced in the absence of the known signaling axis, IL-4Rα/STAT6, for AAM development. While both Dectin-1 and TLR expressed on the cell surface have been shown to sense A. fumigatus, fungus-induced Arg1 expression in CD11c(+) alveolar macrophages was not dependent on either Dectin-1 or the adaptor MyD88 that mediates intracellular signaling by most TLRs. Alveolar macrophages from WT mice efficiently phagocytosed fungal conidia, but those from mice deficient in Dectin-1 showed impaired fungal uptake. Depletion of macrophages with clodronate-filled liposomes increased fungal burden in infected mice. Collectively, our studies suggest that alveolar macrophages, which predominantly acquire an AAM phenotype following A. fumigatus infection, have a protective role in defense against this fungus.


Subject(s)
Aspergillus fumigatus/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Animals , Arginase/immunology , Cells, Cultured , Gene Expression , Immunity , Lectins, C-Type , Macrophages, Alveolar/metabolism , Membrane Proteins/immunology , Mice , Nerve Tissue Proteins/immunology , Opportunistic Infections , Phagocytosis/immunology , Phenotype
18.
Virology ; 407(1): 160-70, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-20822789

ABSTRACT

Recent findings have implicated tight junction (TJ) protein Occludin (OCLN) as an essential factor for hepatitis C virus (HCV) to enter human hepatocytes. To gain insights into OCLN-mediated HCV entry, we created a panel of OCLN deletion mutants and found that without impairing OCLN's cell surface localization, removal of the extracellular loop 2 (EL2) from OCLN abolished both its ability to mediate HIV-HCV pseudotypes' (HCVpp) entry as well as its ability to coprecipitate HCV glycoprotein E2. Recombinant OCLN EL2, however, failed to robustly bind soluble E2 (sE2) in pull-down assays. Subsequent studies revealed that OCLN formed complex with Dynamin II, an important GTPase for endocytosis, in an EL2-dependent fashion. HCVpp, as well as cell culture grown HCV (HCVcc), was sensitive to Dynamin knockdown or inhibition. We conclude that OCLN EL2 dictates the Dynamin-dependent HCV entry. Furthermore, OCLN could function to bridge virions to Dynamin-dependent endocytic machineries.


Subject(s)
Dynamin II/metabolism , Hepacivirus/physiology , Membrane Proteins/physiology , Receptors, Virus/physiology , Virus Internalization , Cell Line , Dynamin II/antagonists & inhibitors , Gene Knockdown Techniques , HIV/genetics , Humans , Membrane Proteins/genetics , Mutant Proteins/genetics , Mutant Proteins/physiology , Occludin , Protein Binding , Receptors, Virus/genetics , Sequence Deletion
19.
Int J Dev Biol ; 54(4): 731-6, 2010.
Article in English | MEDLINE | ID: mdl-20209443

ABSTRACT

The LIM-domain containing transcription factor, Lhx1, is involved in the regulation of early gastrulation cell movements, kidney organogenesis and other processes in vertebrate model organisms. To follow the expression of this gene in live embryos, we created transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) under the control of lhx1a regulatory regions. Tg(lhx1a:EGFP)(pt303) recapitulates the expression of endogenous lhx1a beginning at early gastrula stages through 72 hours of development with only few exceptions. In addition, over-expression of the Nodal ligand, ndr1, results in the concomitant expansion of the transgene and endogenous lhx1a expression. Treatment of Tg(lhx1a:EGFP)(pt303) embryos with the small molecule SB-431542, an inhibitor of Nodal signaling, results in the loss of both transgene and endogenous lhx1a expression. These experiments suggest that Tg(lhx1a:EGFP)(pt303) is regulated in a manner similar to endogenous lhx1a. Therefore, this reporter can be utilized not only for monitoring lhx1a expression, but also for numerous applications, including chemical genetics screening.


Subject(s)
Genes, Reporter , Homeodomain Proteins/genetics , Transcription Factors/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified , Benzamides/metabolism , Dioxoles/metabolism , Gastrula/metabolism , Green Fluorescent Proteins/genetics , Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolism , Transgenes , Zebrafish/metabolism , Zebrafish Proteins/metabolism
20.
J Biomed Mater Res B Appl Biomater ; 92(2): 390-6, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19904819

ABSTRACT

Sepsis is characterized by a systemic inflammatory response caused by infection, and can result in organ failure and death. Removal of inflammatory mediators such as cytokines from the circulating blood is a promising treatment for severe sepsis. We are developing an extracorporeal hemoadsorption device to remove cytokines from the blood using biocompatible, polymer sorbent beads. In this study, we used confocal laser scanning microscopy (CLSM) to directly examine adsorption dynamics of a cytokine (IL-6) within hemoadsorption beads. Fluorescently labeled IL-6 was incubated with sorbent particles, and CLSM was used to quantify spatial adsorption profiles of IL-6 within the sorbent matrix. IL-6 adsorption was limited to the outer 15 microm of the sorbent particle over a relevant clinical time period, and intraparticle adsorption dynamics was modeled using classical adsorption/diffusion mechanisms. A single model parameter, alpha = q(max) K/D, was estimated by fitting CLSM intensity profiles to our mathematical model, where q(max) and K are Langmuir adsorption isotherm parameters, and D is the effective diffusion coefficient of IL-6 within the sorbent matrix. Given the large diameter of our sorbent beads (450 microm), less than 20% of available sorbent surface area participates in cytokine adsorption. Development of smaller beads may accelerate cytokine adsorption by maximizing available surface area per bead mass.


Subject(s)
Interleukin-6/isolation & purification , Adsorption , Animals , Data Interpretation, Statistical , Fluorescent Dyes , Forecasting , Interleukin-6/chemistry , Kinetics , Microscopy, Confocal , Microspheres , Models, Statistical , Polystyrenes , Porosity , Rats , Recombinant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...