Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Sci Adv ; 10(29): eadn4582, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39018392

ABSTRACT

The pyruvate dehydrogenase complex (PDHc) is a key megaenzyme linking glycolysis with the citric acid cycle. In mammalian PDHc, dihydrolipoamide acetyltransferase (E2) and the dihydrolipoamide dehydrogenase-binding protein (E3BP) form a 60-subunit core that associates with the peripheral subunits pyruvate dehydrogenase (E1) and dihydrolipoamide dehydrogenase (E3). The structure and stoichiometry of the fully assembled, mammalian PDHc or its core remained elusive. Here, we demonstrate that the human PDHc core is formed by 48 E2 copies that bind 48 E1 heterotetramers and 12 E3BP copies that bind 12 E3 homodimers. Cryo-electron microscopy, together with native and cross-linking mass spectrometry, confirmed a core model in which 8 E2 homotrimers and 12 E2-E2-E3BP heterotrimers assemble into a pseudoicosahedral particle such that the 12 E3BP molecules form six E3BP-E3BP intertrimer interfaces distributed tetrahedrally within the 60-subunit core. The even distribution of E3 subunits in the peripheral shell of PDHc guarantees maximum enzymatic activity of the megaenzyme.


Subject(s)
Cryoelectron Microscopy , Pyruvate Dehydrogenase Complex , Humans , Pyruvate Dehydrogenase Complex/metabolism , Pyruvate Dehydrogenase Complex/chemistry , Models, Molecular , Dihydrolipoamide Dehydrogenase/metabolism , Dihydrolipoamide Dehydrogenase/chemistry , Protein Multimerization , Protein Binding , Protein Subunits/metabolism , Protein Subunits/chemistry , Dihydrolipoyllysine-Residue Acetyltransferase/metabolism , Dihydrolipoyllysine-Residue Acetyltransferase/chemistry
2.
Nat Commun ; 15(1): 3032, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589417

ABSTRACT

Type 1 pili are important virulence factors of uropathogenic Escherichia coli that mediate bacterial attachment to epithelial cells in the urinary tract. The pilus rod is comprised of thousands of copies of the main structural subunit FimA and is assembled in vivo by the assembly platform FimD. Although type 1 pilus rods can self-assemble from FimA in vitro, this reaction is slower and produces structures with lower kinetic stability against denaturants compared to in vivo-assembled rods. Our study reveals that FimD-catalysed in vitro-assembled type 1 pilus rods attain a similar stability as pilus rods assembled in vivo. Employing structural, biophysical and biochemical analyses, we show that in vitro assembly reactions lacking FimD produce pilus rods with structural defects, reducing their stability against dissociation. Overall, our results indicate that FimD is not only required for the catalysis of pilus assembly, but also to control the assembly of the most stable quaternary structure.


Subject(s)
Escherichia coli Proteins , Fimbriae Proteins , Fimbriae Proteins/genetics , Fimbriae Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/genetics , Fimbriae, Bacterial/chemistry
3.
Sci Adv ; 10(6): eadj6358, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38324697

ABSTRACT

The Escherichia coli pyruvate dehydrogenase complex (PDHc) is a ~5 MDa assembly of the catalytic subunits pyruvate dehydrogenase (E1), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). The PDHc core is a cubic complex of eight E2 homotrimers. Homodimers of the peripheral subunits E1 and E3 associate with the core by binding to the peripheral subunit binding domain (PSBD) of E2. Previous reports indicated that 12 E1 dimers and 6 E3 dimers bind to the 24-meric E2 core. Using an assembly arrested E2 homotrimer (E23), we show that two of the three PSBDs in the E23 dimerize, that each PSBD dimer cooperatively binds two E1 dimers, and that E3 dimers only bind to the unpaired PSBD in E23. This mechanism is preserved in wild-type PDHc, with an E1 dimer:E2 monomer:E3 dimer stoichiometry of 16:24:8. The conserved PSBD dimer interface indicates that PSBD dimerization is the previously unrecognized architectural determinant of gammaproteobacterial PDHc megacomplexes.


Subject(s)
Dihydrolipoamide Dehydrogenase , Dihydrolipoyllysine-Residue Acetyltransferase , Escherichia coli , Pyruvate Dehydrogenase Complex , Dihydrolipoamide Dehydrogenase/genetics , Dihydrolipoamide Dehydrogenase/chemistry , Dihydrolipoamide Dehydrogenase/metabolism , Dihydrolipoyllysine-Residue Acetyltransferase/chemistry , Dihydrolipoyllysine-Residue Acetyltransferase/metabolism , Dimerization , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Pyruvate Dehydrogenase Complex/chemistry , Pyruvate Dehydrogenase Complex/metabolism
4.
Nat Commun ; 14(1): 7718, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001074

ABSTRACT

Adhesive type 1 pili from uropathogenic Escherichia coli strains are filamentous, supramolecular protein complexes consisting of a short tip fibrillum and a long, helical rod formed by up to several thousand copies of the major pilus subunit FimA. Here, we reconstituted the entire type 1 pilus rod assembly reaction in vitro, using all constituent protein subunits in the presence of the assembly platform FimD, and identified the so-far uncharacterized subunit FimI as an irreversible assembly terminator. We provide a complete, quantitative model of pilus rod assembly kinetics based on the measured rate constants of FimD-catalyzed subunit incorporation. The model reliably predicts the length distribution of assembled pilus rods as a function of the ratio between FimI and the main pilus subunit FimA and is fully consistent with the length distribution of membrane-anchored pili assembled in vivo. The results show that the natural length distribution of adhesive pili formed via the chaperone-usher pathway results from a stochastic chain termination reaction. In addition, we demonstrate that FimI contributes to anchoring the pilus to the outer membrane and report the crystal structures of (i) FimI in complex with the assembly chaperone FimC, (ii) the FimI-FimC complex bound to the N-terminal domain of FimD, and (iii) a ternary complex between FimI, FimA and FimC that provides structural insights on pilus assembly termination and pilus anchoring by FimI.


Subject(s)
Escherichia coli Proteins , Fimbriae, Bacterial , Fimbriae, Bacterial/metabolism , Escherichia coli Proteins/chemistry , Fimbriae Proteins/genetics , Fimbriae Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Molecular Chaperones/metabolism
5.
Angew Chem Int Ed Engl ; 62(37): e202305120, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37248171

ABSTRACT

In NMR spectroscopy, residual dipolar couplings (RDCs) have emerged as one of the most exquisite probes of biological structure and dynamics. The measurement of RDCs relies on the partial alignment of the molecule of interest, for example by using a liquid crystal as a solvent. Here, we establish bacterial type 1 pili as an alternative liquid-crystalline alignment medium for the measurement of RDCs. To achieve alignment at pilus concentrations that allow for efficient NMR sample preparation, we elongated wild-type pili by recombinant overproduction of the main structural pilus subunit. Building on the extraordinary stability of type 1 pili against spontaneous dissociation and unfolding, we show that the medium is compatible with challenging experimental conditions such as high temperature, the presence of detergents, organic solvents or very acidic pH, setting it apart from most established alignment media. Using human ubiquitin, HIV-1 TAR RNA and camphor as spectroscopic probes, we demonstrate the applicability of the medium for the determination of RDCs of proteins, nucleic acids and small molecules. Our results show that type 1 pili represent a very useful alternative to existing alignment media and may readily assist the characterization of molecular structure and dynamics by NMR.


Subject(s)
Fimbriae, Bacterial , Proteins , Humans , Magnetic Resonance Spectroscopy/methods , Proteins/chemistry , Solvents , Ubiquitin/chemistry
6.
Commun Biol ; 6(1): 301, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944713

ABSTRACT

Mycobacterium tuberculosis Clp proteases are targeted by several antitubercular compounds, including cyclomarin A (CymA). CymA exerts its toxicity by binding to AAA + chaperone ClpC1. Here, we show that CymA can also bind a partial homologue of ClpC1, known as ClpC2, and we reveal the molecular basis of these interactions by determining the structure of the M. tuberculosis ClpC2:CymA complex. Furthermore, we show deletion of clpC2 in Mycobacterium smegmatis increases sensitivity to CymA. We find CymA exposure leads to a considerable upregulation of ClpC2 via a mechanism in which binding of CymA to ClpC2 prevents binding of ClpC2 to its own promoter, resulting in upregulation of its own transcription in response to CymA. Our study reveals that ClpC2 not only senses CymA, but that through this interaction it can act as a molecular sponge to counteract the toxic effects of CymA and possibly other toxins targeting essential protease component ClpC1 in mycobacteria.


Subject(s)
Heat-Shock Proteins , Mycobacterium tuberculosis , Proteolysis , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology
7.
RSC Chem Biol ; 2(3): 917-931, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-34212152

ABSTRACT

A hallmark of N-linked glycosylation in the secretory compartments of eukaryotic cells is the sequential remodeling of an initially uniform oligosaccharide to a site-specific, heterogeneous ensemble of glycostructures on mature proteins. To understand site-specific processing, we used protein disulfide isomerase (PDI), a model protein with five glycosylation sites, for molecular dynamics (MD) simulations and compared the result to a biochemical in vitro analysis with four different glycan processing enzymes. As predicted by an analysis of the accessibility of the N-glycans for their processing enzymes derived from the MD simulations, N-glycans at different glycosylation sites showed different kinetic properties for the processing enzymes. In addition, altering the tertiary structure of the glycoprotein PDI affected its N-glycan remodeling in a site-specific way. We propose that the observed differential N-glycan reactivities depend on the surrounding protein tertiary structure and lead to different glycan structures in the same protein through kinetically controlled processing pathways.

8.
J Pharm Sci ; 108(7): 2358-2366, 2019 07.
Article in English | MEDLINE | ID: mdl-30797781

ABSTRACT

The immunogenicity of protein aggregates has been investigated in numerous studies. Nevertheless, it is still unknown which kind of protein aggregates enhance immunogenicity the most. The ability of the currently used in vitro and in vivo systems regarding their predictability of immunogenicity in humans is often questionable, and results are partially contradictive. In this study, we used a 2D in vitro assay and a complex 3D human artificial lymph node model to predict the immunogenicity of protein aggregates of bevacizumab and adalimumab. The monoclonal antibodies were exposed to different stress conditions such as light, heat, and mechanical stress to trigger the formation of protein aggregates and particles, and samples were analyzed thoroughly. Cells and culture supernatants were harvested and analyzed for dendritic cell marker and cytokines. Our study in the artificial lymph node model revealed that bevacizumab after exposure to heat triggered a TH1- and proinflammatory immune response, whereas no trend of immune responses was seen for adalimumab after exposure to different stress conditions. The human artificial lymph node model represents a new test model for testing the immunogenicity of protein aggregates combining the relevance of a 3D human system with the rather easy handling of an in vitro setup.


Subject(s)
Antibody Formation/immunology , Lymph Nodes/immunology , Protein Aggregates/immunology , Adalimumab/immunology , Antibodies, Monoclonal/immunology , Bevacizumab/immunology , Cells, Cultured , Cytokines/immunology , Dendritic Cells/immunology , Humans , Inflammation/immunology , Th1 Cells/immunology
9.
Elife ; 72018 05 29.
Article in English | MEDLINE | ID: mdl-29809155

ABSTRACT

Cdc48 is a AAA+ ATPase that plays an essential role for many cellular processes in eukaryotic cells. An archaeal homologue of this highly conserved enzyme was shown to directly interact with the 20S proteasome. Here, we analyze the occurrence and phylogeny of a Cdc48 homologue in Actinobacteria and assess its cellular function and possible interaction with the bacterial proteasome. Our data demonstrate that Cdc48-like protein of actinobacteria (Cpa) forms hexameric rings and that the oligomeric state correlates directly with the ATPase activity. Furthermore, we show that the assembled Cpa rings can physically interact with the 20S core particle. Comparison of the Mycobacterium smegmatis wild-type with a cpa knockout strain under carbon starvation uncovers significant changes in the levels of around 500 proteins. Pathway mapping of the observed pattern of changes identifies ribosomal proteins as a particular hotspot, pointing amongst others toward a role of Cpa in ribosome adaptation during starvation.


Subject(s)
Actinobacteria/enzymology , Bacterial Proteins/metabolism , Mycobacterium/metabolism , Proteasome Endopeptidase Complex/metabolism , Valosin Containing Protein/metabolism , Adaptation, Physiological , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Mycobacterium/classification , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/genetics , Valosin Containing Protein/genetics
10.
J Allergy Clin Immunol ; 142(4): 1194-1205.e3, 2018 10.
Article in English | MEDLINE | ID: mdl-29627082

ABSTRACT

BACKGROUND: Insect-bite hypersensitivity is the most common allergic dermatitis in horses. Excoriated skin lesions are typical symptoms of this seasonal and refractory chronic disease. On a cellular level, the skin lesions are characterized by massive eosinophil infiltration caused by an underlying allergic response. OBJECTIVE: To target these cells and treat disease, we developed a therapeutic vaccine against equine IL-5 (eIL-5), the master regulator of eosinophils. METHODS: The vaccine consisted of eIL-5 covalently linked to a virus-like particle derived from cucumber mosaic virus containing the tetanus toxoid universal T-cell epitope tt830-843 (CMVTT). Thirty-four Icelandic horses were recruited and immunized with 400 µg of eIL-5-CMVTT formulated in PBS without adjuvant (19 horses) or PBS alone (15 horses). RESULTS: The vaccine was well tolerated and did not reveal any safety concerns but was able to induce anti-eIL-5 autoantibody titers in 17 of 19 horses. This resulted in a statistically significant reduction in clinical lesion scores when compared with previous season levels, as well as levels in placebo-treated horses. Protection required a minimal threshold of anti-eIL-5 antibodies. Clinical improvement by disease scoring showed that 47% and 21% of vaccinated horses reached 50% and 75% improvement, respectively. In the placebo group no horse reached 75% improvement, and only 13% reached 50% improvement. CONCLUSION: Our therapeutic vaccine inducing autoantibodies against self IL-5 brings biologics to horses, is the first successful immunotherapeutic approach targeting a chronic disease in horses, and might facilitate development of a similar vaccine against IL-5 in human subjects.


Subject(s)
Horse Diseases/therapy , Horses/immunology , Hypersensitivity/therapy , Insect Bites and Stings/therapy , Interleukin-5/immunology , Vaccination/veterinary , Animals , Autoantibodies/immunology , Ceratopogonidae/immunology , Cucumovirus , Horse Diseases/immunology , Hypersensitivity/immunology , Hypersensitivity/veterinary , Immunoglobulin E/immunology , Insect Bites and Stings/immunology , Insect Bites and Stings/veterinary , Random Allocation
11.
ALTEX ; 35(2): 179-192, 2018.
Article in English | MEDLINE | ID: mdl-28968481

ABSTRACT

Significant progress has been made in the development and validation of non-animal test methods for skin sensitization assessment. At present, three of the four key events of the Adverse Outcome Pathway (AOP) are assessable by OECD-accepted in vitro methods. The fourth key event describes the immunological response in the draining lymph node where activated dendritic cells present major histocompatibility complex-bound chemically modified peptides to naive T cells, thereby priming the proliferation of antigen-specific T cells. Despite substantial efforts, modelling and assessing this adaptive immune response to sensitizers with in vitro T cell assays still represents a challenge. The Cosmetics Europe Skin Tolerance Task Force organized a workshop, bringing together academic researchers, method developers, industry representatives and regulatory stakeholders to review the scientific status of T cell-based assays, foster a mutual scientific understanding and conceive new options to assess T cell activation. Participants agreed that current T cell assays have come a long way in predicting immunogenicity, but that further investment and collaboration is required to simplify assays, optimize their sensitivity, better define human donor-to-donor variability and evaluate their value to predict sensitizer potency. Furthermore, the potential role of T cell assays in AOP-based testing strategies and subsequent safety assessment concepts for cosmetic ingredients was discussed. It was agreed that it is currently difficult to anticipate uses of T cell assay data for safety assessment and concluded that experience from case studies on real-life risk assessment scenarios is needed to further consider the usefulness of assessing the fourth AOP key event.


Subject(s)
Allergens/analysis , Biological Assay , Cosmetics/analysis , Lymphocyte Activation/drug effects , T-Lymphocytes , Adverse Outcome Pathways , Consumer Product Safety , Humans , In Vitro Techniques/methods , In Vitro Techniques/standards , Skin/drug effects , Skin Tests/standards , Skin Tests/trends
12.
Structure ; 25(12): 1829-1838.e4, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29129382

ABSTRACT

Adhesive chaperone-usher pili are long, supramolecular protein fibers displayed on the surface of many bacterial pathogens. The type 1 and P pili of uropathogenic Escherichia coli (UPEC) play important roles during urinary tract colonization, mediating attachment to the bladder and kidney, respectively. The biomechanical properties of the helical pilus rods allow them to reversibly uncoil in response to flow-induced forces, allowing UPEC to retain a foothold in the unique and hostile environment of the urinary tract. Here we provide the 4.2-Å resolution cryo-EM structure of the type 1 pilus rod, which together with the previous P pilus rod structure rationalizes the remarkable "spring-like" properties of chaperone-usher pili. The cryo-EM structure of the type 1 pilus rod differs in its helical parameters from the structure determined previously by a hybrid approach. We provide evidence that these structural differences originate from different quaternary structures of pili assembled in vivo and in vitro.


Subject(s)
Fimbriae Proteins/chemistry , Cryoelectron Microscopy , Protein Domains , Protein Folding
13.
Bioengineering (Basel) ; 4(2)2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28952517

ABSTRACT

Xylose is a general component of O-glycans in mammals. Core-xylosylation of N-glycans is only found in plants and helminth. Consequently, xylosylated N-glycans cause immunological response in humans. We have used the F-protein of the human respiratory syncytial virus (RSV), one of the main causes of respiratory tract infection in infants and elderly, as a model protein for vaccination. The RSV-F protein was expressed in CHO-DG44 cells, which were further modified by co-expression of ß1,2-xylosyltransferase from Nicotiana tabacum. Xylosylation of RSV-F N-glycans was shown by monosaccharide analysis and MALDI-TOF mass spectrometry. In immunogenic studies with a human artificial lymph node model, the engineered RSV-F protein revealed improved vaccination efficacy.

14.
Bioengineering (Basel) ; 4(3)2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28952549

ABSTRACT

Subunit vaccines often require adjuvants to elicit sustained immune activity. Here, a method is described to evaluate the efficacy of single vaccine candidates in the preclinical stage based on cytokine and gene expression analysis. As a model, the recombinant human respiratory syncytial virus (RSV) fusion protein (RSV-F) was produced in CHO cells. For comparison, wild-type and glycoengineered, afucosylated RSV-F were established. Both glycoprotein vaccines were tested in a commercial Human Artificial Lymph Node in vitro model (HuALN®). The analysis of six key cytokines in cell culture supernatants showed well-balanced immune responses for the afucosylated RSV-F, while immune response of wild-type RSV-F was more Th1 accentuated. In particular, stronger and specific secretion of interleukin-4 after each round of re-stimulation underlined higher potency and efficacy of the afucosylated vaccine candidate. Comprehensive gene expression analysis by nCounter gene expression assay confirmed the stronger onset of the immunologic reaction in stimulation experiments with the afucosylated vaccine in comparison to wild-type RSV-F and particularly revealed prominent activation of Th17 related genes, innate immunity, and comprehensive activation of humoral immunity. We, therefore, show that our method is suited to distinguish the potency of two vaccine candidates with minor structural differences.

15.
Drug Discov Today ; 22(2): 327-339, 2017 02.
Article in English | MEDLINE | ID: mdl-27989722

ABSTRACT

Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies, and the corporate and non-governmental organisation (NGO) sectors, in this consensus report, we analyse, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathways-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this.


Subject(s)
Biomedical Research , Drug Discovery , Alzheimer Disease , Animals , Asthma , Autism Spectrum Disorder , Autoimmune Diseases , Consensus , Cystic Fibrosis , Humans , Liver Diseases , Models, Animal
16.
Angew Chem Int Ed Engl ; 55(32): 9350-5, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27351462

ABSTRACT

The complex between the bacterial type 1 pilus subunit FimG and the peptide corresponding to the N-terminal extension (termed donor strand, Ds) of the partner subunit FimF (DsF) shows the strongest reported noncovalent molecular interaction, with a dissociation constant (KD ) of 1.5×10(-20) m. However, the complex only exhibits a slow association rate of 330 m(-1) s(-1) that limits technical applications, such as its use in affinity purification. Herein, a structure-based approach was used to design pairs of FimGt (a FimG variant lacking its own N-terminal extension) and DsF variants with enhanced electrostatic surface complementarity. Association of the best mutant FimGt/DsF pairs was accelerated by more than two orders of magnitude, while the dissociation rates and 3D structures of the improved complexes remained essentially unperturbed. A KD  value of 8.8×10(-22) m was obtained for the best mutant complex, which is the lowest value reported to date for a protein/ligand complex.


Subject(s)
Escherichia coli Proteins/chemistry , Fimbriae Proteins/chemistry , Ligands , Models, Molecular , Protein Engineering , Static Electricity , Surface Properties
17.
ALTEX ; 33(3): 272-321, 2016.
Article in English | MEDLINE | ID: mdl-27180100

ABSTRACT

The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.


Subject(s)
Animal Testing Alternatives , Hazardous Substances/toxicity , Lab-On-A-Chip Devices , Stem Cells/physiology , Toxicity Tests/methods , Animals , Cell Line
18.
Bioengineering (Basel) ; 2(4): 213-234, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-28952479

ABSTRACT

Manipulations of cell surface glycosylation or glycan decoration of selected proteins hold immense potential for exploring structure-activity relations or increasing glycoprotein quality. Metabolic glycoengineering describes the strategy where exogenously supplied sugar analogues intercept biosynthetic pathways and are incorporated into glycoconjugates. Low membrane permeability, which so far limited the large-scale adaption of this technology, can be addressed by the introduction of acylated monosaccharides. In this work, we investigated tetra-O-acetylated, -propanoylated and -polyethylene glycol (PEG)ylated fucoses. Concentrations of up to 500 µM had no substantial effects on viability and recombinant glycoprotein production of human embryonic kidney (HEK)-293T cells. Analogues applied to an engineered Chinese hamster ovary (CHO) cell line with blocked fucose de novo synthesis revealed an increase in cell surface and recombinant antibody fucosylation as proved by lectin blotting, mass spectrometry and monosaccharide analysis. Significant fucose incorporation was achieved for tetra-O-acetylated and -propanoylated fucoses already at 20 µM. Sequential fucosylation of the recombinant glycoprotein, achieved by the application of increasing concentrations of PEGylated fucose up to 70 µM, correlated with a reduced antibody's binding activity in a Fcγ receptor IIIa (FcγRIIIa) binding assay. Our results provide further insights to modulate fucosylation by exploiting the salvage pathway via metabolic glycoengineering.

19.
Adv Drug Deliv Rev ; 69-70: 103-22, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24447895

ABSTRACT

It has been widely recognised that the phylogenetic distance between laboratory animals and humans limits the former's predictive value for immunogenicity testing of biopharmaceuticals and nanostructure-based drug delivery and adjuvant systems. 2D in vitro assays have been established in conventional culture plates with little success so far. Here, we detail the status of various 3D approaches to emulate innate immunity in non-lymphoid organs and adaptive immune response in human professional lymphoid immune organs in vitro. We stress the tight relationship between the necessarily changing architecture of professional lymphoid organs at rest and when activated by pathogens, and match it with the immunity identified in vitro. Recommendations for further improvements of lymphoid tissue architecture relevant to the development of a sustainable adaptive immune response in vitro are summarized. In the end, we sketch a forecast of translational innovations in the field to model systemic innate and adaptive immunity in vitro.


Subject(s)
Adaptive Immunity/immunology , Cell Culture Techniques/methods , Immunity, Innate/immunology , Animals , Cell Culture Techniques/trends , Humans , Immunogenetic Phenomena/immunology , Organ Culture Techniques
20.
Int J Artif Organs ; 35(11): 986-95, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23065892

ABSTRACT

INTRODUCTION: Mesenchymal stromal cells (MSC), known for their high immune modulatory capacity are promising tools for several cell-based therapies. To better mimic the in vivo situation of MSC interactions with immune cells, we applied an artificial lymph node (ALN)-bioreactor culture system combining a miniaturized perfusion bioreactor with a 3D matrix-based cell culture of immune competent cells forming micro-organoids. METHODS: Rat lymph node cells and allogeneic bone marrow-derived MSCs were seeded in a 20:1 ratio within the agarose matrix of the ALN-reactor. Lymphocytes were pre-incubated with Concanavalin A (ConA) and then co-cultured with MSC in the matrix with additional ConA in the perfusing medium. Live/dead staining showed survival of the co-cultures during the 8-day ALN-reactor run. Paraffin sections of bioreactor matrices were analyzed by proliferating cell nuclear antigen (PCNA)-specific stai-ning to determine MSC proliferation. Immune modulatory capacity was defined by daily analysis of cytokine secretion profiles (TNFa, IFNy, IL-1a, IL-1ß, IL-2, IL-4, IL-6, IL-10, IL-12p40/p70, GM-CSF). RESULTS: Cytokine peak secretion at day 2 was significantly inhibited by MSCs for TNFa (96.8 ± 4.8%) and IFNy (88.7 ± 12.0%) in 3D co-cultures. In contrast, other cytokines (IL-1, IL-6, IL-12) were induced. Furthermore, we detected a significantly higher (58.8%) fraction of proliferating MSCs in the presence of immune cells compared to control bioreactors loaded with MSCs only. CONCLUSIONS: In the future, this system might be an excellent tool to investigate the mechanisms of MSC-mediated immune modulation during simulated in vivo conditions.


Subject(s)
Cell Communication/physiology , Lymph Nodes/pathology , Lymphocytes/physiology , Mesenchymal Stem Cells/physiology , Animals , Bioreactors , Cell Culture Techniques , Cell Proliferation , Coculture Techniques , Cytokines/metabolism , Male , Proliferating Cell Nuclear Antigen/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL