Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem ; 65(5): 674-683, 2019 05.
Article in English | MEDLINE | ID: mdl-30770374

ABSTRACT

BACKGROUND: Accurate tissue diagnosis during ovarian cancer surgery is critical to maximize cancer excision and define treatment options. Yet, current methods for intraoperative tissue evaluation can be time intensive and subjective. We have developed a handheld and biocompatible device coupled to a mass spectrometer, the MasSpec Pen, which uses a discrete water droplet for molecular extraction and rapid tissue diagnosis. Here we evaluated the performance of this technology for ovarian cancer diagnosis across different sample sets, tissue types, and mass spectrometry systems. METHODS: MasSpec Pen analyses were performed on 192 ovarian, fallopian tube, and peritoneum tissue samples. Samples were evaluated by expert pathologists to confirm diagnosis. Performance using an Orbitrap and a linear ion trap mass spectrometer was tested. Statistical models were generated using machine learning and evaluated using validation and test sets. RESULTS: High performance for high-grade serous carcinoma (n = 131; clinical sensitivity, 96.7%; specificity, 95.7%) and overall cancer (n = 138; clinical sensitivity, 94.0%; specificity, 94.4%) diagnoses was achieved using Orbitrap data. Variations in the mass spectra from normal tissue, low-grade, and high-grade serous ovarian cancers were observed. Discrimination between cancer and fallopian tube or peritoneum tissues was also achieved with accuracies of 92.6% and 87.9%, respectively, and 100% clinical specificity for both. Using ion trap data, excellent results for high-grade serous cancer vs normal ovarian differentiation (n = 40; clinical sensitivity, 100%; specificity, 100%) were obtained. CONCLUSIONS: The MasSpec Pen, together with machine learning, provides robust molecular models for ovarian serous cancer prediction and thus has potential for clinical use for rapid and accurate ovarian cancer diagnosis.


Subject(s)
Mass Spectrometry/instrumentation , Ovarian Neoplasms/diagnosis , Fallopian Tubes/metabolism , Female , Humans , Middle Aged , Ovarian Neoplasms/metabolism , Peritoneum/metabolism , Reproducibility of Results , Sensitivity and Specificity , Time and Motion Studies
2.
Sci Transl Med ; 9(406)2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28878011

ABSTRACT

Conventional methods for histopathologic tissue diagnosis are labor- and time-intensive and can delay decision-making during diagnostic and therapeutic procedures. We report the development of an automated and biocompatible handheld mass spectrometry device for rapid and nondestructive diagnosis of human cancer tissues. The device, named MasSpec Pen, enables controlled and automated delivery of a discrete water droplet to a tissue surface for efficient extraction of biomolecules. We used the MasSpec Pen for ex vivo molecular analysis of 20 human cancer thin tissue sections and 253 human patient tissue samples including normal and cancerous tissues from breast, lung, thyroid, and ovary. The mass spectra obtained presented rich molecular profiles characterized by a variety of potential cancer biomarkers identified as metabolites, lipids, and proteins. Statistical classifiers built from the histologically validated molecular database allowed cancer prediction with high sensitivity (96.4%), specificity (96.2%), and overall accuracy (96.3%), as well as prediction of benign and malignant thyroid tumors and different histologic subtypes of lung cancer. Notably, our classifier allowed accurate diagnosis of cancer in marginal tumor regions presenting mixed histologic composition. Last, we demonstrate that the MasSpec Pen is suited for in vivo cancer diagnosis during surgery performed in tumor-bearing mouse models, without causing any observable tissue harm or stress to the animal. Our results provide evidence that the MasSpec Pen could potentially be used as a clinical and intraoperative technology for ex vivo and in vivo cancer diagnosis.


Subject(s)
Mass Spectrometry/instrumentation , Neoplasms/diagnosis , Organ Specificity , Animals , Disease Models, Animal , Female , Humans , Intraoperative Care , Mice, Nude , Molecular Diagnostic Techniques , Neoplasms/surgery , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...