Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(13): 20629-20640, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37381182

ABSTRACT

We consider a microscopy setting where quantum light is used for illumination. Spontaneous parametric down conversion (SPDC) is used as a source of a heralded single photon, which is quantum light prepared in a Fock state. We present analytical formulas for the spatial mode tracking along with the heralded and non-heralded mode widths. The obtained analytical results are supported by numerical calculations and the following discussion taking into account realistic setup parameters such as finite-size optics and finite-size single-photon detectors. This allows us to observe that the diffraction limit can be approached with simultaneous alleviation of the photon loss leading to increased signal-to-noise ratio - a factor limiting practical applications of quantum light. Additionally, it is shown that the spatial resolution can be manipulated by carefully preparing the amplitude and phase of the spatial mode profile of the single photon at the input to the microscope objective. Here, the spatial entanglement of the biphoton wavefunction or adaptive optics can be applied for spatial mode shaping. Analytical dependencies between the incident and focused spatial mode profiles parameters are provided.

2.
Opt Express ; 29(2): 564-570, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726289

ABSTRACT

A simple, room-temperature, cavity- and vacuum-free interface for a photon-matter interaction is implemented. In the experiment, a heralded single photon generated by the process of spontaneous parametric down-conversion is absorbed by an ensemble of nitrogen-vacancy color centers. The broad absorption spectrum associated with the phonon sideband solves the mismatch problem of a narrow absorption bandwidth in a typical atomic medium and broadband spectrum of quantum light. The heralded single photon source is tunable in the spectral range 452 - 575 nm, which overlaps well with the absorption spectrum of nitrogen-vacancy centers.

SELECTION OF CITATIONS
SEARCH DETAIL