Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13573, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604831

ABSTRACT

Agriculture and forestry cover more than 75% of Europe, and invertebrate pests are a costly challenge for these two economic sectors. Landscape management is increasingly promoted as a solution to enhance biological pest control, but little is known on its effects on adjacent crop fields and woodlands. This study aims to explore the effect of the proportion of woodlands and permanent grasslands as well as crop diversity on biological pest control simultaneously in cereals fields and woodland patches, in south-western France. We used different types of sentinel prey as well as bird and carabid community metrics to assess biological pest control potential in these two ecosystems. We first show that land cover variables influence biological pest control both in cereal fields and woodland patches, but have antagonistic effects in the two ecosystems. Although results vary according to the biological control indicator considered, we show that increasing landscape heterogeneity represents a valuable solution to manage trade-offs and promote higher average predation rates across forests and cereal fields. Our study therefore calls for more integrative studies to identify landscape management strategies that enable nature-based solutions across ecosystems.


Subject(s)
Ecosystem , Forests , Environmental Biomarkers , Agriculture , Benchmarking , Edible Grain
2.
PLoS One ; 18(1): e0280516, 2023.
Article in English | MEDLINE | ID: mdl-36706082

ABSTRACT

Soil tillage or herbicide applications are commonly used in agriculture for weed control. These measures may also represent a disturbance for soil microbial communities and their functions. However, the generality of response patterns of microbial communities and functions to disturbance have rarely been studied at large geographical scales. We investigated how a soil disturbance gradient (low, intermediate, high), realized by either tillage or herbicide application, affects diversity and composition of soil bacterial and fungal communities as well as soil functions in vineyards across five European countries. Microbial alpha-diversity metrics responded to soil disturbance sporadically, but inconsistently across countries. Increasing soil disturbance changed soil microbial community composition at the European level. However, the effects of soil disturbance on the variation of microbial communities were smaller compared to the effects of location and soil covariates. Microbial respiration was consistently impaired by soil disturbance, while effects on decomposition of organic substrates were inconsistent and showed positive and negative responses depending on the respective country. Therefore, we conclude that it is difficult to extrapolate results from one locality to others because microbial communities and environmental conditions vary strongly over larger geographical scales.


Subject(s)
Herbicides , Microbiota , Soil/chemistry , Farms , Soil Microbiology , Herbicides/pharmacology
3.
Sci Rep ; 11(1): 11979, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099746

ABSTRACT

Understanding the response of biodiversity to organic farming is crucial to design more sustainable agriculture. While it is known that organic farming benefits biodiversity on average, large variability in the effects of this farming system exists. Moreover, it is not clear how different practices modulate the performance of organic farming for biodiversity conservation. In this study, we investigated how the abundance and taxonomic richness of multiple species groups responds to certified organic farming and conventional farming in vineyards. Our analyses revealed that farming practices at the field scale are more important drivers of community abundance than landscape context. Organic farming enhanced the abundances of springtails (+ 31.6%) and spiders (+ 84%), had detrimental effects on pollinator abundance (- 11.6%) and soil microbial biomass (- 9.1%), and did not affect the abundance of ground beetles, mites or microarthropods. Farming practices like tillage regime, insecticide use and soil copper content drove most of the detected effects of farming system on biodiversity. Our study revealed varying effects of organic farming on biodiversity and clearly indicates the need to consider farming practices to understand the effects of farming systems on farmland biodiversity.

5.
Insects ; 11(3)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244905

ABSTRACT

Invertebrates perform many vital functions in agricultural production, but many taxa are in decline, including pest natural enemies. Action is needed to increase their abundance if more sustainable agricultural systems are to be achieved. Conservation biological control (CBC) is a key component of integrated pest management yet has failed to be widely adopted in mainstream agriculture. Approaches to improving conservation biological control have been largely ad hoc. Two approaches are described to improve this process, one based upon pest natural enemy ecology and resource provision while the other focusses on the ecosystem service delivery using the QuESSA (Quantification of Ecological Services for Sustainable Agriculture) project as an example. In this project, a predictive scoring system was developed to show the potential of five seminatural habitat categories to provide biological control, from which predictive maps were generated for Europe. Actual biological control was measured in a series of case studies using sentinel systems (insect or seed prey), trade-offs between ecosystem services were explored, and heatmaps of biological control were generated. The overall conclusion from the QuESSA project was that results were context specific, indicating that more targeted approaches to CBC are needed. This may include designing new habitats or modifying existing habitats to support the types of natural enemies required for specific crops or pests.

6.
J Environ Manage ; 223: 614-624, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29975888

ABSTRACT

This multidisciplinary research work evaluated the effects of soil erosion on grape yield and quality and on different soil functions, namely water and nutrient supply, carbon sequestration, organic matter recycling, and soil biodiversity, with the aim to understand the causes of soil malfunctioning and work out a proper strategy of soil remediation. Degraded areas in nineteen organically farmed European and Turkish vineyards resulted in producing significantly lower amounts of grapes and excessive concentrations of sugar. Plants suffered from decreased water nutrition, due to shallower rooting depth, compaction, and reduced available water capacity, lower chemical fertility, as total nitrogen and cation exchange capacity, and higher concentration of carbonates. Carbon storage and organic matter recycling were also depressed. The general trend of soil enzyme activity mainly followed organic matter stock. Specific enzymatic activities suggested that in degraded soils, alongside a general slowdown in organic matter cycling, there was a greater reduction in decomposition capacity of the most recalcitrant forms. The abundance of Acari Oribatida and Collembola resulted the most sensitive indicator of soil degradation among the considered microarthropods. No clear difference in overall microbial richness and evenness were observed. All indices were relatively high and indicative of rich occurrence of many and rare microbial species. Dice cluster analyses indicated slight qualitative differences in Eubacterial and fungal community compositions in rhizosphere soil and roots in degraded soils. This multidisciplinary study indicates that the loss of soil fertility caused by excessive earth movement before planting, or accelerated erosion, mainly affects water nutrition and chemical fertility. Biological soil fertility is also reduced, in particular the ability of biota to decompose organic matter, while biodiversity is less affected, probably because of the organic management. Therefore, the restoration of the eroded soils requires site-specific and intensive treatments, including accurately chosen organic matrices for fertilization, privileging the most easily decomposable. Restoring soil fertility in depth, however, remain an open question, which needs further investigation.


Subject(s)
Biodiversity , Ecosystem , Soil Microbiology , Carbon , Farms , Nitrogen , Soil
7.
PLoS One ; 7(8): e44247, 2012.
Article in English | MEDLINE | ID: mdl-22937168

ABSTRACT

A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur) half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect) rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect). Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores.


Subject(s)
Genetic Variation , Herbivory/physiology , Insecta/physiology , Quercus/genetics , Animals , Genotype
8.
Oecologia ; 168(2): 415-24, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21811874

ABSTRACT

According to the associational resistance hypothesis, neighbouring plants are expected to influence both the insect herbivore communities and their natural enemies. However, this has rarely been tested for the effects of canopy trees on herbivory of seedlings. One possible mechanism responsible for associational resistance is the indirect impact of natural enemies on insect herbivory, such as insectivorous birds. But it remains unclear to what extent such trophic cascades are influenced by the composition of plant associations (i.e. identity of 'associated' plants). Here, we compared the effect of bird exclusion on insect leaf damage for seedlings of three broadleaved tree species in three different forest habitats. Exclusion of insectivorous birds affected insect herbivory in a species-specific manner: leaf damage increased on Betula pendula seedlings whereas bird exclusion had no effect for two oaks (Quercus robur and Q. ilex). Forest habitat influenced both the extent of insect herbivory and the effect of bird exclusion. Broadleaved seedlings had lower overall leaf damage within pine plantations than within broadleaved stands, consistent with the resource concentration hypothesis. The indirect effect of bird exclusion on leaf damage was only significant in pine plantations, but not in exotic and native broadleaved woodlands. Our results support the enemies hypothesis, which predicts that the effects of insectivorous birds on insect herbivory on seedlings are greater beneath non-congeneric canopy trees. Although bird species richness and abundance were greater in broadleaved woodlands, birds were unable to regulate insect herbivory on seedlings in forests of more closely related tree species.


Subject(s)
Betula/physiology , Birds/physiology , Herbivory , Insecta/physiology , Predatory Behavior , Quercus/physiology , Animals , Ecosystem , Food Chain , Population Dynamics , Seedlings/physiology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...