Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(25): 11084-11095, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860676

ABSTRACT

Ethylene oxide ("EtO") is an industrially made volatile organic compound and a known human carcinogen. There are few reliable reports of ambient EtO concentrations around production and end-use facilities, however, despite major exposure concerns. We present in situ, fast (1 Hz), sensitive EtO measurements made during February 2023 across the southeastern Louisiana industrial corridor. We aggregated mobile data at 500 m spatial resolution and reported average mixing ratios for 75 km of the corridor. Mean and median aggregated values were 31.4 and 23.3 ppt, respectively, and a majority (75%) of 500 m grid cells were above 10.9 ppt, the lifetime exposure concentration corresponding to 100-in-one million excess cancer risk (1 × 10-4). A small subset (3.3%) were above 109 ppt (1000-in-one million cancer risk, 1 × 10-3); these tended to be near EtO-emitting facilities, though we observed plumes over 10 km from the nearest facilities. Many plumes were highly correlated with other measured gases, indicating potential emission sources, and a subset was measured simultaneously with a second commercial analyzer, showing good agreement. We estimated EtO for 13 census tracts, all of which were higher than EPA estimates (median difference of 21.3 ppt). Our findings provide important information about EtO concentrations and potential exposure risks in a key industrial region and advance the application of EtO analytical methods for ambient sampling and mobile monitoring for air toxics.


Subject(s)
Environmental Monitoring , Ethylene Oxide , Louisiana , Environmental Monitoring/methods , Humans , Air Pollutants/analysis
2.
medRxiv ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38496588

ABSTRACT

Background: The COVID-19 pandemic has disproportionately affected workers in certain industries and occupations, and the workplace can be a high risk setting for SARS-CoV-2 transmission. In this study, we measured SARS-CoV-2 antibody prevalence and identified work-related risk factors in a population primarily working at industrial livestock operations. Methods: We used a multiplex salivary SARS-CoV-2 IgG antibody assay to determine infection-induced antibody prevalence among 236 adult (≥18 years) North Carolina residents between February 2021 and August 2022. We used the National Institute for Occupational Safety and Health Industry and Occupation Computerized Coding System (NIOCCS) to classify employed participants' industry and compared infection-induced IgG prevalence by participant industry and with the North Carolina general population. We also combined antibody results with reported SARS-CoV-2 molecular test positivity and vaccination history to identify evidence of prior infection. We used logistic regression to estimate odds ratios of prior infection by potential work-related risk factors, adjusting for industry and date. Results: Most participants (55%) were infection-induced IgG positive, including 71% of animal slaughtering and processing industry workers, which is 1.5 to 4.3 times higher compared to the North Carolina general population, as well as higher than molecularly-confirmed cases and the only other serology study we identified of animal slaughtering and processing workers. Considering questionnaire results in addition to antibodies, the proportion of participants with evidence of prior infection increased slightly, to 61%, including 75% of animal slaughtering and processing workers. Participants with more than 1000 compared to 10 or fewer coworkers at their jobsite had higher odds of prior infection (adjusted odds ratio [aOR] 4.5, 95% confidence interval [CI] 1.0 to 21.0). Conclusions: This study contributes evidence of the severe and disproportionate impacts of COVID-19 on animal processing and essential workers and workers in large congregate settings. We also demonstrate the utility of combining non-invasive biomarker and questionnaire data for the study of workplace exposures.

3.
New Solut ; 33(4): 209-219, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38062664

ABSTRACT

Industrial hog operation (IHO) workers face a range of occupational hazards, including exposure to zoonotic pathogens such as livestock-associated antimicrobial-resistant Staphylococcus aureus and swine-origin influenza viruses with epidemic or pandemic potential. To better understand this population's occupational exposure to zoonotic pathogens, we conducted a community-driven qualitative research study in eastern North Carolina. We completed in-depth interviews with ten IHO workers and used thematic analysis to identify and analyze patterns of responses. Workers described direct and indirect occupational contact with hogs, with accompanying potential for dermal, ingestion, and inhalation exposures to zoonotic pathogens. Workers also described potential take-home pathways, wherein they could transfer livestock-associated pathogens and other contaminants from IHOs to their families and communities. Findings warrant future research, and suggest that more restrictive policies on antimicrobials, stronger health and safety regulations, and better policies and practices across all IHOs could afford greater protection against worker and take-home zoonotic pathogen exposures.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Occupational Exposure , Animals , Humans , Pilot Projects , North Carolina/epidemiology , Staphylococcus aureus , Livestock
4.
Environ Sci Process Impacts ; 25(9): 1491-1504, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37584085

ABSTRACT

Exposures to metals from industrial emissions can pose important health risks. The Chester-Trainer-Marcus Hook area of southeastern Pennsylvania is home to multiple petrochemical plants, a refinery, and a waste incinerator, most abutting socio-economically disadvantaged residential communities. Existing information on fenceline community exposures is based on monitoring data with low temporal and spatial resolution and EPA models that incorporate industry self-reporting. During a 3 week sampling campaign in September 2021, size-resolved particulate matter (PM) metals concentrations were obtained at a fixed site in Chester and on-line mobile aerosol measurements were conducted around Chester-Trainer-Marcus Hook. Fixed-site arsenic, lead, antimony, cobalt, and manganese concentrations in total PM were higher (p < 0.001) than EPA model estimates, and arsenic, lead, and cadmium were predominantly observed in fine PM (<2.5 µm), the PM fraction which can penetrate deeply into the lungs. Hazard index analysis suggests adverse effects are not expected from exposures at the observed levels; however, additional chemical exposures, PM size fraction, and non-chemical stressors should be considered in future studies for accurate assessment of risk. Fixed-site MOUDI and nearby mobile aerosol measurements were moderately correlated (r ≥ 0.5) for aluminum, potassium and selenium. Source apportionment analyses suggested the presence of four major emissions sources (sea salt, mineral dust, general combustion, and non-exhaust vehicle emissions) in the study area. Elevated levels of combustion-related elements of health concern (e.g., arsenic, cadmium, antimony, and vanadium) were observed near the waste incinerator and other industrial facilities by mobile monitoring, as well as in residential-zoned areas in Chester. These results suggest potential co-exposures to harmful atmospheric metal/metalloids in communities surrounding the Chester-Trainer-Marcus Hook industrial area at levels that may exceed previous estimates from EPA modeling.


Subject(s)
Air Pollutants , Air Pollution , Arsenic , Metals, Heavy , Selenium , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Antimony/analysis , Arsenic/analysis , Cadmium/analysis , Particulate Matter/analysis , Dust/analysis , Selenium/analysis , Vanadium/analysis , Aerosols/analysis , Metallurgy , Metals, Heavy/analysis
5.
mSphere ; 8(1): e0052222, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36656002

ABSTRACT

Industrial livestock operations (ILOs), particularly processing facilities, emerged as centers of coronavirus disease 2019 (COVID-19) outbreaks in spring 2020. Confirmed cases of COVID-19 underestimate true prevalence. To investigate the prevalence of antibodies against SARS-CoV-2, we enrolled 279 participants in North Carolina from February 2021 to July 2022: 90 from households with at least one ILO worker (ILO), 97 from high-ILO intensity areas (ILO neighbors [ILON]), and 92 from metropolitan areas (metro). More metro (55.4%) compared to ILO (51.6%) and ILON participants (48.4%) completed the COVID-19 primary vaccination series; the median completion date was more than 4 months later for ILO compared to ILON and metro participants, although neither difference was statistically significant. Participants provided a saliva swab we analyzed for SARS-CoV-2 IgG using a multiplex immunoassay. The prevalence of infection-induced IgG (positive for nucleocapsid and receptor binding domain) was higher among ILO (63%) than ILON (42.9%) and metro (48.7%) participants (prevalence ratio [PR], 1.38; 95% confidence interval [CI], 1.06 to 1.80; reference category ILON and metro combined). The prevalence of infection-induced IgG was also higher among ILO participants than among an Atlanta health care worker cohort (PR, 2.45; 95% CI, 1.80 to 3.33) and a general population cohort in North Carolina (PRs, 6.37 to 10.67). The infection-induced IgG prevalence increased over the study period. Participants reporting not masking in public in the past 2 weeks had higher infection-induced IgG prevalence (78.6%) than participants reporting masking (49.3%) (PR, 1.59; 95% CI, 1.19 to 2.13). Lower education, more people per bedroom, Hispanic/Latino ethnicity, and more contact with people outside the home were also associated with higher infection-induced IgG prevalence. IMPORTANCE Few studies have measured COVID-19 seroprevalence in North Carolina, especially among rural, Black, and Hispanic/Latino communities that have been heavily affected. Antibody results show high rates of COVID-19 among industrial livestock operation workers and their household members. Antibody results add to evidence of health disparities related to COVID-19 by socioeconomic status and ethnicity. Associations between masking and physical distancing with antibody results also add to evidence of the effectiveness of these prevention strategies. Delays in the timing of receipt of COVID-19 vaccination reinforce the importance of dismantling vaccination barriers, especially for industrial livestock operation workers and their household members.


Subject(s)
COVID-19 , Animals , Humans , COVID-19/epidemiology , SARS-CoV-2 , Livestock , Prevalence , North Carolina/epidemiology , Seroepidemiologic Studies , COVID-19 Vaccines , Antibodies, Viral , Immunoglobulin G
6.
Environ Int ; 143: 105956, 2020 10.
Article in English | MEDLINE | ID: mdl-32702594

ABSTRACT

BACKGROUND: The environmental health community needs transparent, methodologically rigorous, and rapid approaches for updating human health risk assessments. These assessments often contain reference values for cancer and/or noncancer effects. Increasingly, the use of systematic review methods are preferred when developing these assessments. Systematic evidence maps are a type of analysis that has the potential to be very helpful in the update process, especially when combined with machine-learning software advances designed to expedite the process of conducting a review. OBJECTIVES: To evaluate the applicability of evidence mapping to determine whether new evidence is likely to result in a change to an existing health reference value, using inhalation exposure to the air pollutant acrolein as a case example. METHODS: New literature published since the 2008 California Environmental Protection Agency's Office of Environmental Health Hazard Assessment (OEHHA) Reference Exposure Level (REL) for acrolein was assessed. Systematic review methods were used to search the literature and screening included the use of machine-learning software. The Populations, Exposures, Comparators and Outcomes (PECO) criteria were kept broad to identify studies that characterized acute and chronic exposure and could be informative for hazard characterization. Studies that met the PECO criteria after full-text review were briefly summarized before their suitability for chronic point of departure (POD) derivation and calculation of a reference value was considered. Studies considered potentially suitable underwent a targeted evaluation to determine their suitability for use in dose-response analysis. RESULTS: Over 15,000 studies were identified from scientific databases. Both machine-learning and manual screening processes were used to identify 60 studies considered PECO-relevant after full-text review. Most of these PECO-relevant studies were short-term exposure animal studies (acute or less than 1 month of exposure) and considered less suitable for deriving a chronic reference value when compared to the subchronic study in rats used in the 2008 OEHHA assessment. Thirteen epidemiological studies were identified but had limitations in the exposure assessment that made them less suitable for dose-response compared to the subchronic rat study. Among the 13 studies, there were four controlled trial studies that have the potential to be informative for future acute reference value derivation. Thus, the 2008 subchronic rat study used by OEHHA appears to still be the most appropriate study for chronic reference value derivation. In addition, advances in dosimetric modeling for gases, including new evidence pertinent to acrolein, could be considered when updating existing acrolein toxicity values. CONCLUSIONS: Evidence mapping is a very useful tool to assess the need for updating an assessment based on understanding the potential impact of new studies on revising an existing health reference value. In this case example, the focus was to identify studies suitable for chronic exposure dose-response analysis, while also identifying studies that may be important to consider for acute exposure scenarios, hazard identification, or for future research. This allows the evidence map to be a useful resource for a range of decision-making contexts. Specialized systematic review software increased the efficiency of the process in terms of human resources and time to conduct the analysis.


Subject(s)
Acrolein , Air Pollutants , Environmental Health , Animals , Humans , Rats , Reference Values , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...