Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Pathol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924548

ABSTRACT

The E3 ubiquitin ligase thyroid hormone receptor interacting protein 12 (TRIP12) has been implicated in pancreatic adenocarcinoma (PDAC) through its role in mediating the degradation of pancreas transcription factor 1a (PTF1a). PTF1a is a transcription factor essential for the acinar differentiation state that is notably diminished during the early steps of pancreatic carcinogenesis. Despite these findings, the direct involvement of TRIP12 in the onset of pancreatic cancer has yet to be established. In this study, we demonstrated that TRIP12 protein was significantly upregulated in human pancreatic preneoplastic lesions. Furthermore, we observed that TRIP12 overexpression varied within PDAC samples and PDAC-derived cell lines. We further demonstrated that TRIP12 was required for PDAC-derived cell growth and for the expression of E2F-targeted genes. Acinar-to-ductal cell metaplasia (ADM) is a reversible process that reflects the high plasticity of acinar cells. ADM becomes irreversible in the presence of oncogenic Kras mutations and leads to the formation of preneoplastic lesions. Using two genetically modified mouse models, we showed that a loss of TRIP12 prevented acini from developing ADM in response to pancreatic injury. With two additional mouse models, we further discovered that a depletion of TRIP12 prevented the formation of KrasG12D-induced preneoplastic lesions and impaired metastasis formation in the presence of mutated KrasG12D and Trp53R172H genes. In summary our study identified an overexpression of TRIP12 from the early stages of pancreatic carcinogenesis and proposed this E3 ubiquitin ligase as a novel regulator of acinar plasticity with an important dual role in initiation and metastatic steps of PDAC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

2.
Sci Rep ; 12(1): 16760, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202961

ABSTRACT

Honey bees are of great economic and ecological importance, but are facing multiple stressors that can jeopardize their pollination efficiency and survival. Therefore, understanding the physiological bases of their stress response may help defining treatments to improve their resilience. We took an original approach to design molecules with this objective. We took advantage of the previous identified neuropeptide allatostatin A (ASTA) and its receptor (ASTA-R) as likely mediators of the honey bee response to a biologically relevant stressor, exposure to an alarm pheromone compound. A first series of ASTA-R ligands were identified through in silico screening using a homology 3D model of the receptor and in vitro binding experiments. One of these (A8) proved also efficient in vivo, as it could counteract two behavioral effects of pheromone exposure, albeit only in the millimolar range. This putative antagonist was used as a template for the chemical synthesis of a second generation of potential ligands. Among these, two compounds showed improved efficiency in vivo (in the micromolar range) as compared to A8 despite no major improvement in their affinity for the receptor in vitro. These new ligands are thus promising candidates for alleviating stress in honey bees.


Subject(s)
Neuropeptides , Pollination , Animals , Bees , Neuropeptides/metabolism , Pheromones/chemistry
3.
Nanoscale Adv ; 4(2): 421-436, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-36132704

ABSTRACT

The destruction of cells using the mechanical activation of magnetic nanoparticles with low-frequency magnetic fields constitutes a recent and interesting approach in cancer therapy. Here, we showed that superparamagnetic iron oxide nanoparticles as small as 6 nm were able to induce the death of pancreatic cancer-associated fibroblasts, chosen as a model. An exhaustive screening of the amplitude, frequency, and type (alternating vs. rotating) of magnetic field demonstrated that the best efficacy was obtained for a rotating low-amplitude low-frequency magnetic field (1 Hz and 40 mT), reaching a 34% ratio in cell death induction; interestingly, the cell death was not maximized for the largest amplitudes of the magnetic field. State-of-the-art kinetic Monte-Carlo simulations able to calculate the torque undergone by assemblies of magnetic nanoparticles explained these features and were in agreement with cell death experiments. Simulations showed that the force generated by the nanoparticles once internalized inside the lysosome was around 3 pN, which is in principle not large enough to induce direct membrane disruption. Other biological mechanisms were explored to explain cell death: the mechanical activation of magnetic nanoparticles induced lysosome membrane permeabilization and the release of the lysosome content and cell death was mediated through a lysosomal pathway depending on cathepsin-B activity. Finally, we showed that repeated rotating magnetic field exposure halted drastically the cell proliferation. This study established a proof-of-concept that ultra-small nanoparticles can disrupt the tumor microenvironment through mechanical forces generated by mechanical activation of magnetic nanoparticles upon low-frequency rotating magnetic field exposure, opening new opportunities for cancer therapy.

4.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142542

ABSTRACT

Despite decades of effort in understanding pancreatic ductal adenocarcinoma (PDAC), there is still a lack of innovative targeted therapies for this devastating disease. Herein, we report the expression of apelin and its receptor, APJ, in human pancreatic adenocarcinoma and its protumoral function. Apelin and APJ protein expression in tumor tissues from patients with PDAC and their spatiotemporal pattern of expression in engineered mouse models of PDAC were investigated by immunohistochemistry. Apelin signaling function in tumor cells was characterized in pancreatic tumor cell lines by Western blot as well as proliferation, migration assays and in murine orthotopic xenograft experiments. In premalignant lesions, apelin was expressed in epithelial lesions whereas APJ was found in isolated cells tightly attached to premalignant lesions. However, in the invasive stage, apelin and APJ were co-expressed by tumor cells. In human tumor cells, apelin induced a long-lasting activation of PI3K/Akt, upregulated ß-catenin and the oncogenes c-myc and cyclin D1 and promoted proliferation, migration and glucose uptake. Apelin receptor blockades reduced cancer cell proliferation along with a reduction in pancreatic tumor burden. These findings identify the apelin signaling pathway as a new actor for PDAC development and a novel therapeutic target for this incurable disease.


Subject(s)
Adenocarcinoma , Apelin Receptors/metabolism , Apelin/metabolism , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/genetics , Cyclin D1/metabolism , Glucose , Humans , Mice , Oncogenes , Pancreatic Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , beta Catenin/metabolism , Pancreatic Neoplasms
5.
Nano Lett ; 22(5): 1986-1991, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35191311

ABSTRACT

The origin of cell death in the magnetomechanical actuation of cells induced by magnetic nanoparticle motion under low-frequency magnetic fields is still elusive. Here, a miniaturized electromagnet fitted under a confocal microscope is used to observe in real time cells specifically targeted by superparamagnetic nanoparticles and exposed to a low-frequency rotating magnetic field. Our analysis reveals that the lysosome membrane is permeabilized in only a few minutes after the start of magnetic field application, concomitant with lysosome movements toward the nucleus. Those events are associated with disorganization of the tubulin microtubule network and a change in cell morphology. This miniaturized electromagnet will allow a deeper insight into the physical, molecular, and biological process occurring during the magnetomechanical actuation of magnetic nanoparticles.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Lysosomes , Magnetic Fields , Magnetics , Motion
6.
Nanotechnology ; 32(38)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34111853

ABSTRACT

In this work, we studied the impact of magnetic nanoparticles (MNPs) interactions with HeLa cells when they are exposed to high frequency alternating magnetic field (AMF). Specifically, we measured the nanobiomechanical properties of cell interfaces by using atomic force microscopy (AFM). Magnetite (Fe3O4) MNPs were synthesized by coprecipitation and encapsulated with silica (SiO2): Fe3O4@SiO2and functionalized with amino groups (-NH2): Fe3O4@SiO2-NH2, by sonochemical processing. HeLa cells were incubated with or without MNPs, and then exposed to AMF at 37 °C. A biomechanical analysis was then performed through AFM, providing the Young's modulus and stiffness of the cells. The statistical analysis (p < 0.001) showed that AMF application or MNPs interaction modified the biomechanical behavior of the cell interfaces. Interestingly, the most significant difference was found for HeLa cells incubated with Fe3O4@SiO2-NH2and exposed to AMF, showing that the local heat of these MNPs modified their elasticity and stiffness.


Subject(s)
Biomechanical Phenomena/physiology , Cell Physiological Phenomena/physiology , Magnetite Nanoparticles/chemistry , Silicon Dioxide/chemistry , Elastic Modulus/physiology , HeLa Cells , Humans , Microscopy, Atomic Force , Nanotechnology , Surface Properties
7.
Cell Mol Gastroenterol Hepatol ; 11(5): 1405-1436, 2021.
Article in English | MEDLINE | ID: mdl-33482394

ABSTRACT

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) from pancreatic adenocarcinoma (PDA) present high protein synthesis rates. CAFs express the G-protein-coupled somatostatin receptor sst1. The sst1 agonist SOM230 blocks CAF protumoral features in vitro and in immunocompromised mice. We have explored here the therapeutic potential of SOM230, and underlying mechanisms, in immunocompetent models of murine PDA mimicking the heavy fibrotic and immunosuppressive stroma observed in patient tumors. METHODS: Large-scale mass spectrometry analyses were performed on media conditioned from 9 patient PDA-derived CAF primary cultures. Spontaneous transgenic and experimental (orthotopic co-graft of tumor cells plus CAFs) PDA-bearing mice were longitudinally ultrasound-monitored for tumor and metastatic progression. Histopathology and flow cytometry analyses were performed on primary tumors and metastases. Stromal signatures were functionally validated through bioinformatics using several published, and 1 original, PDA database. RESULTS: Proteomics on the CAF secretome showed that SOM230 controls stromal activities including inflammatory responses. Among the identified secreted proteins, we validated that colony-stimulating factor 1 (CSF-1) (a macrophage growth factor) was reduced by SOM230 in the tumor and plasma of PDA-harboring mice, alongside intratumor stromal normalization (reduced CAF and macrophage activities), and dramatic metastasis reduction. In transgenic mice, these SOM230 benefits alleviate the chemotherapy-induced (gemcitabine) immunosuppressive stroma reshaping. Mechanistically, SOM230 acts in vivo on CAFs through sst1 to disrupt prometastatic CAF production of CSF-1 and cross-talk with macrophages. We found that in patients, stromal CSF-1 was associated with aggressive PDA forms. CONCLUSIONS: We propose SOM230 as an antimetastatic therapy in PDA for its capacity to remodel the fibrotic and immunosuppressive myeloid stroma. This pharmacotherapy should benefit PDA patients treated with chemotherapies.


Subject(s)
Cancer-Associated Fibroblasts/drug effects , Carcinoma, Pancreatic Ductal/drug therapy , Macrophages/drug effects , Pancreatic Neoplasms/drug therapy , Secretome/drug effects , Somatostatin/analogs & derivatives , Aged , Aged, 80 and over , Animals , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/secondary , Female , Hormones/pharmacology , Humans , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Somatostatin/pharmacology
8.
J Mater Chem B ; 8(25): 5515-5528, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32490469

ABSTRACT

Fibrosis is characterized by a pathologic deposition of collagen I, leading to impaired function of organs. Tissue biopsy is the gold standard method for the diagnosis of fibrosis but this is an invasive procedure, subject to sampling errors. Several non-invasive techniques such as magnetic resonance imaging (MRI) using non-specific probes have been developed but they are not fully satisfying as they allow diagnosis at a late stage. In this study, collagelin, a collagen-binding peptide has been covalently linked using click chemistry to pegylated Ultra Small Super Paramagnetic Iron Oxide Nanoparticles (USPIO-PO-PEG-collagelin NPs) with the aim of diagnosing fibrosis at an early stage by MRI. USPIO-PO-PEG-collagelin NPs showed a high affinity for collagen I, two times higher than that of free collagelin whereas not peptide labeled USPIO NPs (USPIO-PO-PEG-yne) did not present any affinity. NPs were not toxic for macrophages and fibroblasts. Diffusion through collagen hydrogels concentrated at 3 and 10 mg mL-1 revealed a large accumulation of USPIO-PO-PEG-collagelin NPs within the collagen network after 72 hours, ca. 3 times larger than that of unlabeled USPIO, thereby evidencing the specific targeting of collagen I. Moreover, the quantity of USPIO-PO-PEG-collagelin NPs accumulated within hydrogels was proportional to the collagen concentration. Subsequently, the NPs diffusion through collagen hydrogels was monitored by MRI. The MRI T2 time relaxation decreased much more significantly with depth for USPIO-PO-PEG-collagelin NPs compared to unlabeled ones. Taken together, these results show that USPIO-PEG-collagelin NPs are promising as effective MRI nanotracers for molecular imaging of fibrosis at an early stage.


Subject(s)
Biocompatible Materials/chemistry , Fibrosis/diagnostic imaging , Magnetic Iron Oxide Nanoparticles/chemistry , Magnetic Resonance Imaging , Peptide Fragments/chemistry , Polyethylene Glycols/chemistry , Sialoglycoproteins/chemistry , Animals , Biocompatible Materials/chemical synthesis , Cells, Cultured , Humans , Mice , Molecular Imaging , Particle Size , RAW 264.7 Cells , Surface Properties
9.
Peptides ; 125: 170229, 2020 03.
Article in English | MEDLINE | ID: mdl-31857104

ABSTRACT

GIP is well known as a peptide regulating metabolic functions. In this review paper, we summarize a series of data on GIP receptor (GIPR). First, expression study of GIPR in human neuroendocrine tumours showed a very high incidence (nearly 100%) and a high density in both functional and non functional pancreatic tumours, ileal tumours, bronchial tumours and medullary thyroid carcinomas. Then, data on internalization of GIPR following stimulation by GIP are reported. Rapid and abundant internalization of GIPR also found in tumor pancreatic endocrine cells opens the possibility of tumor imaging and eradication using radiolabeled GIP. Interestingly, internalized GIPR continues to signal in early endosomes stimulating production of cAMP and activation of PKA, thus, supporting the view that GIPR signals from both plasma membrane and vesicles of internalization. At last, we summarize data from studies using in synergy molecular modeling and site-directed mutagenesis, which identified crucial amino acids of transmembrane domains of GIPR involved in GIPR binding site of GIP and/or in its activation and coupling to Gs protein. All together, these last molecular data may help to better understand structure-activity relationship data on GIP and GIPR.


Subject(s)
Endocytosis , Endosomes/metabolism , Neuroendocrine Tumors/pathology , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Gastrointestinal Hormone/metabolism , Animals , Humans , Neuroendocrine Tumors/metabolism , Signal Transduction , Structure-Activity Relationship
10.
Mol Pharmacol ; 96(5): 550-561, 2019 11.
Article in English | MEDLINE | ID: mdl-31436539

ABSTRACT

Many physiologic processes are controlled through the activation of G protein-coupled receptors (GPCRs) by regulatory peptides, making peptide GPCRs particularly useful targets for major human diseases such as diabetes and cancer. Peptide GPCRs are also being evaluated as next-generation targets for the development of novel antiparasite agents and insecticides in veterinary medicine and agriculture. Resolution of crystal structures for several peptide GPCRs has advanced our understanding of peptide-receptor interactions and fueled interest in correlating peptide heterogeneity with receptor-binding properties. In this review, the knowledge of recently crystalized peptide-GPCR complexes, previously accumulated peptide structure-activity relationship studies, receptor mutagenesis, and sequence alignment are integrated to better understand peptide binding to the transmembrane cavity of class A GPCRs. Using SAR data, we show that peptide class A GPCRs can be divided into groups with distinct hydrophilic residues. These characteristic residues help explain the preference of a receptor to bind the C-terminal free carboxyl group, the C-terminal amidated group, or the N-terminal ammonium group of peptides.


Subject(s)
Peptides/chemistry , Peptides/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Animals , Crystallography, X-Ray/methods , Humans , Peptides/genetics , Protein Binding/physiology , Protein Structure, Secondary , Receptors, G-Protein-Coupled/genetics
11.
Biol Aujourdhui ; 212(1-2): 13-19, 2018.
Article in French | MEDLINE | ID: mdl-30362451

ABSTRACT

G-protein coupled receptors represent the largest family of membrane receptors. G-protein dependent signal of GPCR is classically thought to originate exclusively from the plasma membrane and, until very recently, internalized GPCRs were considered silent. At present, experimental proofs exist showing that GPCR can continue to signal via G proteins after internalization. We demonstrated that, once internalized in early endosomes, Glucose-dependent Insulinotropic Peptide Receptor (GIPR) continues to stimulate production of cAMP and activate PKA. In addition to indirect proofs showing that kinetics of cAMP production and PKA activation depend on internalization and GIPR trafficking, we identified the active form of Gαs on early endosomes containing GIPR and detected a distinct FRET signal accounting for cAMP production at the surface of endosomes containing GIP, relative to endosomes without GIP.


Subject(s)
Adenylyl Cyclases/metabolism , Endosomes/metabolism , Receptors, Gastrointestinal Hormone/physiology , Animals , Endosomes/enzymology , Enzyme Activation , Gastric Inhibitory Polypeptide/physiology , Humans , Protein Transport , Signal Transduction/physiology
12.
Nanomaterials (Basel) ; 8(7)2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29954075

ABSTRACT

Doxorubicin is a cytotoxic drug used for the treatment of many cancer types. However, its significant dose-related adverse effects including cardiotoxicity may hamper its efficiency. Moreover, the multidrug resistance that appears during treatments limits anti-cancer therapies. Hyperthermia has been introduced as an adjuvant anti-cancer therapy and presents promising opportunities especially in combination with chemotherapy. However, hyperthermia methods including standard magnetic hyperthermia do not discriminate between the target and the surrounding normal tissues and can lead to side effects. In this context, a Magnetic Intra-Lysosomal Hyperthermia (MILH) approach, which occurs without perceptible temperature rise, has been developed. We previously showed that minute amounts of iron oxide magnetic nanoparticles targeting the gastrin receptor (CCK2R) are internalized by cancer cells through a CCK2R-dependent physiological process, accumulated into their lysosomes and kill cancer cells upon high frequency alternating magnetic field (AMF) application through lysosomal cell death. Here, we show that the combination of MILH with doxorubicin increases the efficiency of the eradication of endocrine tumor cells with synergism. We also demonstrate that these two treatments activate two different cell death pathways that are respectively dependent on Caspase-1 and Caspase-3 activation. These findings will result in the development of new anti-tumoral, intra-lysosomal-thermo/chemotherapy with better curative effects than chemotherapy alone and that are devoid of adverse effects linked to standard hyperthermia approaches.

13.
J Control Release ; 270: 120-134, 2018 01 28.
Article in English | MEDLINE | ID: mdl-29203413

ABSTRACT

Therapeutic strategies using drugs which cause Lysosomal Cell Death have been proposed for eradication of resistant cancer cells. In this context, nanotherapy based on Magnetic Intra-Lysosomal Hyperthermia (MILH) generated by magnetic nanoparticles (MNPs) that are grafted with ligands of receptors overexpressed in tumors appears to be a very promising therapeutic option. However, mechanisms whereby MILH induces cell death are still elusive. Herein, using Gastrin-grafted MNPs specifically delivered to lysosomes of tumor cells from different cancers, we provide evidences that MILH causes cell death through a non-apoptotic signaling pathway. The mechanism of cell death involves a local temperature elevation at the nanoparticle periphery which enhances the production of reactive oxygen species through the lysosomal Fenton reaction. Subsequently, MILH induces lipid peroxidation, lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol, including Cathepsin-B which activates Caspase-1 but not apoptotic Caspase-3. These data highlight the clear potential of MILH for the eradication of tumors overexpressing receptors.


Subject(s)
Ferric Compounds/administration & dosage , Gastrins/administration & dosage , Lysosomes/metabolism , Nanoparticles/administration & dosage , Pyroptosis/drug effects , Reactive Oxygen Species/metabolism , Animals , Cathepsin B/metabolism , Cell Line , Cricetinae , Hot Temperature , Humans , Magnetic Phenomena
14.
Biochem Pharmacol ; 120: 33-45, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27641811

ABSTRACT

Until very recently, G-protein dependent signal of GPCRs was thought to originate exclusively from the plasma membrane and internalized GPCRs were considered silent. Here, we demonstrated that, once internalized and located in the membrane of early endosomes, glucose-dependent Insulinotropic receptor (GIPR) continues to trigger production of cAMP and PKA activation. Direct evidence is based on identification of the active form of Gαs in early endosomes containing GIPR using a genetically encoded GFP tagged nanobody, and on detection of a distinct FRET signal accounting for cAMP production at the surface of endosomes containing GIP, compared to endosomes without GIP. Furthermore, decrease of the sustained phase of cAMP production and PKA activation kinetics as well as reversibility of cAMP production and PKA activity following GIP washout in cells treated with a pharmacological inhibitor of GIPR internalization, and continuous increase of cAMP level over time in the presence of dominant-negative Rab7, which causes accumulation of early endosomes in cells, were noticed. Hence the GIPR joins the few GPCRs which signal through G-proteins both at plasma membrane and on endosomes.


Subject(s)
Adenylyl Cyclases/metabolism , Chromogranins/metabolism , Endocytosis , Endosomes/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Gastric Inhibitory Polypeptide/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Second Messenger Systems , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/genetics , Bioluminescence Resonance Energy Transfer Techniques , Chromogranins/chemistry , Chromogranins/genetics , Cyclic AMP/agonists , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Endosomes/enzymology , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/genetics , Gastric Inhibitory Polypeptide/chemistry , Gastric Inhibitory Polypeptide/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Transport , Receptors, Gastrointestinal Hormone/agonists , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Gastrointestinal Hormone/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
15.
Br J Cancer ; 113(11): 1590-8, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26512875

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with a mortality that is almost identical to incidence. Because early detected PDAC is potentially curable, blood-based biomarkers that could detect currently developing neoplasia would improve patient survival and management. PDAC develops from pancreatic intraepithelial neoplasia (PanIN) lesions, graded from low grade (PanIN1) to high grade (PanIN3). We made the hypothesis that specific proteomic signatures from each precancerous stage exist and are detectable in plasma. METHODS: We explored the peptide profiles of microdissected PanIN cells and of plasma samples corresponding to the different PanIN grade from genetically engineered mouse models of PDAC using capillary electrophoresis coupled to mass spectrometry (CE-MS) and Chip-MS/MS. RESULTS: We successfully characterised differential peptides profiles from PanIN microdissected cells. We found that plasma from tumor-bearing mice and age-matched controls exhibit discriminative peptide signatures. We also determined plasma peptide signatures corresponding to low- and high-grade precancerous step present in the mice pancreas using the two mass spectrometry technologies. Importantly, we identified biomarkers specific of PanIN3. CONCLUSIONS: We demonstrate that benign and advanced PanIN lesions display distinct plasma peptide patterns. This strongly supports the perspectives of developing a non-invasive screening test for prediction and early detection of PDAC.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma in Situ/blood , Carcinoma, Pancreatic Ductal/blood , Neoplasm Proteins/blood , Pancreatic Neoplasms/blood , Peptides/blood , Precancerous Conditions/blood , Animals , Biomarkers, Tumor/analysis , Carcinoma in Situ/chemistry , Carcinoma in Situ/pathology , Carcinoma, Pancreatic Ductal/chemistry , Disease Models, Animal , Mice , Neoplasm Proteins/analysis , Pancreatic Neoplasms/chemistry , Peptides/analysis , Precancerous Conditions/chemistry , Precancerous Conditions/pathology , Protein Array Analysis , Proteome/analysis
16.
Mol Cell Endocrinol ; 414: 202-15, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26225752

ABSTRACT

How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor ß-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modeled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide.


Subject(s)
Gastric Inhibitory Polypeptide/agonists , Gastric Inhibitory Polypeptide/pharmacology , Incretins/pharmacology , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Gastrointestinal Hormone/metabolism , Acetylation , Binding Sites , Cyclic AMP/metabolism , HEK293 Cells , Humans , Lysosomes/metabolism , Models, Molecular , Molecular Docking Simulation , Protein Structure, Secondary
17.
J Biol Chem ; 290(24): 15197-209, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25922072

ABSTRACT

The guanine nucleotide exchange factor Rgnef (also known as ArhGEF28 or p190RhoGEF) promotes colon carcinoma cell motility and tumor progression via interaction with focal adhesion kinase (FAK). Mechanisms of Rgnef activation downstream of integrin or G protein-coupled receptors remain undefined. In the absence of a recognized G protein signaling homology domain in Rgnef, no proximal linkage to G proteins was known. Utilizing multiple methods, we have identified Rgnef as a new effector for Gα13 downstream of gastrin and the type 2 cholecystokinin receptor. In DLD-1 colon carcinoma cells depleted of Gα13, gastrin-induced FAK Tyr(P)-397 and paxillin Tyr(P)-31 phosphorylation were reduced. RhoA GTP binding and promoter activity were increased by Rgnef in combination with active Gα13. Rgnef co-immunoprecipitated with activated Gα13Q226L but not Gα12Q229L. The Rgnef C-terminal (CT, 1279-1582) region was sufficient for co-immunoprecipitation, and Rgnef-CT exogenous expression prevented Gα13-stimulated SRE activity. A domain at the C terminus of the protein close to the FAK binding domain is necessary to bind to Gα13. Point mutations of Rgnef-CT residues disrupt association with active Gα13 but not Gαq. These results show that Rgnef functions as an effector of Gα13 signaling and that this linkage may mediate FAK activation in DLD-1 colon carcinoma cells.


Subject(s)
Colonic Neoplasms/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/physiology , Gastrins/physiology , Guanine Nucleotide Exchange Factors/metabolism , Cell Line, Tumor , Colonic Neoplasms/pathology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , HEK293 Cells , Humans , Paxillin/chemistry , Paxillin/metabolism , Phosphorylation , Receptor, Cholecystokinin B/metabolism , Rho Guanine Nucleotide Exchange Factors/chemistry , Rho Guanine Nucleotide Exchange Factors/metabolism , Tyrosine/metabolism
19.
Small ; 11(20): 2437-45, 2015 May.
Article in English | MEDLINE | ID: mdl-25644392

ABSTRACT

Combining high-frequency alternating magnetic fields (AMF) and magnetic nanoparticles (MNPs) is an efficient way to induce biological responses through several approaches: magnetic hyperthermia, drug release, controls of gene expression and neurons, or activation of chemical reactions. So far, these experiments cannot be analyzed in real-time during the AMF application. A miniaturized electromagnet fitting under a confocal microscope is built, which produces an AMF of frequency and amplitude similar to the ones used in magnetic hyperthermia. AMF application induces massive damages to tumoral cells having incorporated nanoparticles into their lysosomes without affecting the others. Using this setup, real-time analyses of molecular events occurring during AMF application are performed. Lysosome membrane permeabilization and reactive oxygen species production are detected after only 30 min of AMF application, demonstrating they occur at an early stage in the cascade of events leading eventually to cell death. Additionally, lysosomes self-assembling into needle-shaped organization under the influence of AMF is observed in real-time. This experimental approach will permit to get a deeper insight into the physical, molecular, and biological process occurring in several innovative techniques used in nanomedecine based on the combined use of MNPs and high-frequency magnetic fields.


Subject(s)
Computer Systems , Hyperthermia, Induced , Magnetic Fields , Microscopy, Confocal/methods , Cell Survival , Endocytosis , Humans , Intracellular Space/metabolism , Lysosomes/metabolism , Miniaturization , Permeability , Reactive Oxygen Species/metabolism
20.
J Biol Chem ; 289(51): 35593-604, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25355311

ABSTRACT

Pancreas transcription factor 1a (PTF1a) plays a crucial role in the early development of the pancreas and in the maintenance of the acinar cell phenotype. Several transcriptional mechanisms regulating expression of PTF1a have been identified. However, regulation of PTF1a protein stability and degradation is still unexplored. Here, we report that inhibition of proteasome leads to elevated levels of PTF1a and to the existence of polyubiquitinated forms of PTF1a. We used the Sos recruitment system, an alternative two-hybrid system method to detect protein-protein interactions in the cytoplasm and to map the interactome of PTF1a. We identified TRIP12 (thyroid hormone receptor-interacting protein 12), an E3 ubiquitin-protein ligase as a new partner of PTF1a. We confirmed PTF1a/TRIP12 interaction in acinar cell lines and in co-transfected HEK-293T cells. The protein stability of PTF1a is significantly increased upon decreased expression of TRIP12. It is reduced upon overexpression of TRIP12 but not a catalytically inactive TRIP12-C1959A mutant. We identified a region of TRIP12 required for interaction and identified lysine 312 of PTF1a as essential for proteasomal degradation. We also demonstrate that TRIP12 down-regulates PTF1a transcriptional and antiproliferative activities. Our data suggest that an increase in TRIP12 expression can play a part in PTF1a down-regulation and indicate that PTF1a/TRIP12 functional interaction may regulate pancreatic epithelial cell homeostasis.


Subject(s)
Carrier Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Blotting, Western , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Cytoplasm/metabolism , HEK293 Cells , Humans , Mutation, Missense , Pancreatic Neoplasms/pathology , Protein Binding , Protein Stability , Proteolysis , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...