Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nat Cancer ; 2(10): 1055-1070, 2021 10.
Article in English | MEDLINE | ID: mdl-35121883

ABSTRACT

Stochastic transition of cancer cells between drug-sensitive and drug-tolerant persister phenotypes has been proposed to play a key role in non-genetic resistance to therapy. Yet, we show here that cancer cells actually possess a highly stable inherited chance to persist (CTP) during therapy. This CTP is non-stochastic, determined pre-treatment and has a unimodal distribution ranging from 0 to almost 100%. Notably, CTP is drug specific. We found that differential serine/threonine phosphorylation of the insulin receptor substrate 1 (IRS1) protein determines the CTP of lung and of head and neck cancer cells under epidermal growth factor receptor inhibition, both in vitro and in vivo. Indeed, the first-in-class IRS1 inhibitor NT219 was highly synergistic with anti-epidermal growth factor receptor therapy across multiple in vitro and in vivo models. Elucidation of drug-specific mechanisms that determine the degree and stability of cellular CTP may establish a framework for the elimination of cancer persisters, using new rationally designed drug combinations.


Subject(s)
ErbB Receptors , Neoplasms , ErbB Receptors/genetics , Insulin Receptor Substrate Proteins/genetics , Phosphorylation , Probability
2.
Sci Rep ; 10(1): 20030, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208761

ABSTRACT

Differentiation therapy has been recently revisited as a prospective approach in cancer therapy by targeting the aberrant growth, and repairing the differentiation and cell death programs of cancer cells. However, differentiation therapy of solid tumors is a challenging issue and progress in this field is limited. We performed High Throughput Screening (HTS) using a novel dual multiplex assay to discover compounds, which induce differentiation of human colon cancer cells. Here we show that the protein arginine methyl transferase (PRMT) type 1 inhibitor, MS023, is a potent inducer of colon cancer cell differentiation with a large therapeutic window. Differentiation changes in the highly aggressive human colon cancer cell line (HT-29) were proved by proteomic and genomic approaches. Growth of HT-29 xenograft in nude mice was significantly delayed upon MS023 treatment and immunohistochemistry of tumor indicated differentiation changes. These findings may lead to development of clinically effective anti-cancer drugs based on the mechanism of cancer cell differentiation.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Cell Differentiation , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Humans , Mice , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
3.
J Am Soc Nephrol ; 31(10): 2278-2291, 2020 10.
Article in English | MEDLINE | ID: mdl-32651222

ABSTRACT

BACKGROUND: During mammalian kidney development, nephron progenitors undergo a mesenchymal-to-epithelial transition and eventually differentiate into the various tubular segments of the nephron. Recently, Drop-seq single-cell RNA sequencing technology for measuring gene expression from thousands of individual cells identified the different cell types in the developing kidney. However, that analysis did not include the additional layer of heterogeneity that alternative mRNA splicing creates. METHODS: Full transcript length single-cell RNA sequencing characterized the transcriptomes of 544 individual cells from mouse embryonic kidneys. RESULTS: Gene expression levels measured with full transcript length single-cell RNA sequencing identified each cell type. Further analysis comprehensively characterized splice isoform switching during the transition between mesenchymal and epithelial cellular states, which is a key transitional process in kidney development. The study also identified several putative splicing regulators, including the genes Esrp1/2 and Rbfox1/2. CONCLUSIONS: Discovery of the sets of genes that are alternatively spliced as the fetal kidney mesenchyme differentiates into tubular epithelium will improve our understanding of the molecular mechanisms that drive kidney development.


Subject(s)
Kidney/embryology , Mesoderm/embryology , Organogenesis/genetics , Urothelium/embryology , Animals , Cell Culture Techniques , Mice , RNA Isoforms , Sequence Analysis, RNA
4.
Cell Stem Cell ; 24(2): 328-341.e9, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30554962

ABSTRACT

The epigenetic dynamics of induced pluripotent stem cell (iPSC) reprogramming in correctly reprogrammed cells at high resolution and throughout the entire process remain largely undefined. Here, we characterize conversion of mouse fibroblasts into iPSCs using Gatad2a-Mbd3/NuRD-depleted and highly efficient reprogramming systems. Unbiased high-resolution profiling of dynamic changes in levels of gene expression, chromatin engagement, DNA accessibility, and DNA methylation were obtained. We identified two distinct and synergistic transcriptional modules that dominate successful reprogramming, which are associated with cell identity and biosynthetic genes. The pluripotency module is governed by dynamic alterations in epigenetic modifications to promoters and binding by Oct4, Sox2, and Klf4, but not Myc. Early DNA demethylation at certain enhancers prospectively marks cells fated to reprogram. Myc activity drives expression of the essential biosynthetic module and is associated with optimized changes in tRNA codon usage. Our functional validations highlight interweaved epigenetic- and Myc-governed essential reconfigurations that rapidly commission and propel deterministic reprogramming toward naive pluripotency.


Subject(s)
Cellular Reprogramming/genetics , Epigenesis, Genetic , Proto-Oncogene Proteins c-myc/metabolism , Transcription, Genetic , Animals , Cell Lineage/genetics , Chromatin/metabolism , Demethylation , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Mice , Protein Binding , RNA, Transfer/metabolism , Transcription Factors/metabolism
5.
World J Biol Psychiatry ; 20(6): 449-461, 2019 07.
Article in English | MEDLINE | ID: mdl-28854847

ABSTRACT

Objectives: Lithium remains the oldest and most effective treatment for mood stabilisation in bipolar disorder (BD), even though at least half of patients are only partially responsive or do not respond. This study aimed to identify biomarkers associated with lithium response in BD, based on comparing RNA sequencing information derived from lymphoblastoid cell lines (LCLs) of lithium-responsive (LR) versus lithium non-responsive (LNR) BD patients, to assess gene expression variations that might bear on treatment outcome. Methods: RNA sequencing was carried out on 24 LCLs from female BD patients (12 LR and 12 LNR) followed by qPCR validation in two additional independent cohorts (41 and 17 BD patients, respectively). Results: Fifty-six genes showed nominal differential expression comparing LR and LNR (FC ≥ |1.3|, P ≤ 0.01). The differential expression of HDGFRP3 and ID2 was validated by qPCR in the independent cohorts. Conclusions: We observed higher expression levels of HDGFRP3 and ID2 in BD patients who favourably respond to lithium. Both of these genes are involved in neurogenesis, and HDGFRP3 has been suggested to be a neurotrophic factor. Additional studies in larger BD cohorts are needed to confirm the potential of HDGFRP3 and ID2 expression levels in blood cells as tentative favourable lithium response biomarkers.


Subject(s)
Antimanic Agents/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/pathology , Gene Expression/drug effects , Lithium Compounds/therapeutic use , Lymphocytes/drug effects , Adult , Aged , Biomarkers , Bipolar Disorder/genetics , Cell Line , Cells, Cultured , Cohort Studies , Female , Gene Expression Profiling , Humans , Inhibitor of Differentiation Protein 2/genetics , Intracellular Signaling Peptides and Proteins/genetics , Male , Middle Aged , Psychiatric Status Rating Scales , Sequence Analysis, RNA , Treatment Outcome
6.
Stem Cell Reports ; 11(1): 288-302, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29937142

ABSTRACT

Aiming to unravel the top of the mammary epithelial cell hierarchy, a subset of the CD49fhighCD24med mammary repopulating units (MRUs) was identified by flow cytometry, expressing high levels of CD200 and its receptor CD200R1. These MRUCD200/CD200R1 repopulated a larger area of de-epithelized mammary fat pads than the rest of the MRUs, termed MRUnot CD200/CD200R1. MRUCD200/CD200R1 maintained a much lower number of divergently defined, highly expressed genes and pathways that support better cell growth, development, differentiation, and progenitor activity than their MRUnot CD200/CD200R1 counterparts. A defined profile of hierarchically associated genes supporting a single-lineage hypothesis was confirmed by in vitro mammosphere analysis that assembled 114 genes with decreased expression from MRUCD200/CD200R1 via MRUnot CD200/CD200R1 toward CD200+CD200R1- and CD200R1+CD200- cells. About 40% of these genes were shared by a previously published database of upregulated genes in mammary/breast stem cells and may represent the core genes involved in mammary stemness.


Subject(s)
Antigens, CD/genetics , Cell Differentiation/genetics , Cell Self Renewal/genetics , Orexin Receptors/genetics , Stem Cells/cytology , Stem Cells/metabolism , Animals , Biomarkers , Computational Biology/methods , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Mice
7.
BMC Genomics ; 19(1): 419, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29848287

ABSTRACT

BACKGROUND: The main bottleneck for genomic studies of tumors is the limited availability of fresh frozen (FF) samples collected from patients, coupled with comprehensive long-term clinical follow-up. This shortage could be alleviated by using existing large archives of routinely obtained and stored Formalin-Fixed Paraffin-Embedded (FFPE) tissues. However, since these samples are partially degraded, their RNA sequencing is technically challenging. RESULTS: In an effort to establish a reliable and practical procedure, we compared three protocols for RNA sequencing using pairs of FF and FFPE samples, both taken from the same breast tumor. In contrast to previous studies, we compared the expression profiles obtained from the two matched sample types, using the same protocol for both. Three protocols were tested on low initial amounts of RNA, as little as 100 ng, to represent the possibly limited availability of clinical samples. For two of the three protocols tested, poly(A) selection (mRNA-seq) and ribosomal-depletion, the total gene expression profiles of matched FF and FFPE pairs were highly correlated. For both protocols, differential gene expression between two FFPE samples was in agreement with their matched FF samples. Notably, although expression levels of FFPE samples by mRNA-seq were mainly represented by the 3'-end of the transcript, they yielded very similar results to those obtained by ribosomal-depletion protocol, which produces uniform coverage across the transcript. Further, focusing on clinically relevant genes, we showed that the high correlation between expression levels persists at higher resolutions. CONCLUSIONS: Using the poly(A) protocol for FFPE exhibited, unexpectedly, similar efficiency to the ribosomal-depletion protocol, with the latter requiring much higher (2-3 fold) sequencing depth to compensate for the relative low fraction of reads mapped to the transcriptome. The results indicate that standard poly(A)-based RNA sequencing of archived FFPE samples is a reliable and cost-effective alternative for measuring mRNA-seq on FF samples. Expression profiling of FFPE samples by mRNA-seq can facilitate much needed extensive retrospective clinical genomic studies.


Subject(s)
Cryopreservation , Gene Expression Profiling , RNA, Messenger/genetics , Sequence Analysis, RNA , Tissue Fixation/methods , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Humans
8.
Nat Ecol Evol ; 2(2): 306-316, 2018 02.
Article in English | MEDLINE | ID: mdl-29255297

ABSTRACT

The larval pool of coral reef fish has a crucial role in the dynamics of adult fish populations. However, large-scale species-level monitoring of species-rich larval pools has been technically impractical. Here, we use high-throughput metabarcoding to study larval ecology in the Gulf of Aqaba, a region that is inhabited by >500 reef fish species. We analysed 9,933 larvae from 383 samples that were stratified over sites, depth and time. Metagenomic DNA extracted from pooled larvae was matched to a mitochondrial cytochrome c oxidase subunit I barcode database compiled for 77% of known fish species within this region. This yielded species-level reconstruction of the larval community, allowing robust estimation of larval spatio-temporal distributions. We found significant correlations between species abundance in the larval pool and in local adult assemblages, suggesting a major role for larval supply in determining local adult densities. We documented larval flux of species whose adults were never documented in the region, suggesting environmental filtering as the reason for the absence of these species. Larvae of several deep-sea fishes were found in shallow waters, supporting their dispersal over shallow bathymetries, potentially allowing Lessepsian migration into the Mediterranean Sea. Our method is applicable to any larval community and could assist coral reef conservation and fishery management efforts.


Subject(s)
Animal Distribution , Fishes/physiology , Metagenome , Animals , Coral Reefs , Electron Transport Complex IV/analysis , Fish Proteins/analysis , Fishes/growth & development , Israel , Larva/growth & development , Larva/physiology , Mitochondrial Proteins/analysis , Oceans and Seas , Population Density , Spatio-Temporal Analysis
9.
Brief Funct Genomics ; 17(1): 64-76, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28968725

ABSTRACT

In recent years, there has been an effort to develop new technologies for measuring gene expression and sequence information from thousands of individual cells. Large data sets that were obtained using these 'single cell' technologies have allowed scientists to address fundamental questions in biomedicine ranging from stems cells and development to cancer and immunology. Here, we provide a brief review of recent developments in single-cell technology. Our intention is to provide a quick background for newcomers to the field as well as a deeper description of some of the leading technologies to date.


Subject(s)
Single-Cell Analysis/methods , Transcriptome/genetics , Data Analysis , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA
10.
Plant Cell ; 29(4): 681-696, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28389586

ABSTRACT

Enlargement and doming of the shoot apical meristem (SAM) is a hallmark of the transition from vegetative growth to flowering. While this change is widespread, its role in the flowering process is unknown. The late termination (ltm) tomato (Solanum lycopersicum) mutant shows severely delayed flowering and precocious doming of the vegetative SAM LTM encodes a kelch domain-containing protein, with no link to known meristem maintenance or flowering time pathways. LTM interacts with the TOPLESS corepressor and with several transcription factors that can provide specificity for its functions. A subgroup of flowering-associated genes is precociously upregulated in vegetative stages of ltm SAMs, among them, the antiflorigen gene SELF PRUNING (SP). A mutation in SP restored the structure of vegetative SAMs in ltm sp double mutants, and late flowering was partially suppressed, suggesting that LTM functions to suppress SP in the vegetative SAM In agreement, SP-overexpressing wild-type plants exhibited precocious doming of vegetative SAMs combined with late flowering, as found in ltm plants. Strong flowering signals can result in termination of the SAM, usually by its differentiation into a flower. We propose that activation of a floral antagonist that promotes SAM growth in concert with floral transition protects it from such terminating effects.


Subject(s)
Flowers/cytology , Flowers/metabolism , Kelch Repeat/physiology , Meristem/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/cytology , Solanum lycopersicum/metabolism , Flowers/genetics , Flowers/physiology , Gene Expression Regulation, Plant , Kelch Repeat/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Meristem/genetics , Meristem/physiology , Mutation , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Nat Protoc ; 10(4): 605-18, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25811895

ABSTRACT

4sUDRB-seq separately measures, on a genomic scale, the distinct contributions of transcription elongation speed and rate of RNA polymerase II (Pol II) transition into active elongation (TAE) to the overall mRNA production rate. It uses reversible inhibition of transcription elongation with 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB), combined with a pulse of 4-thiouridine (4sU), to tag newly transcribed RNA. After DRB removal, cells are collected at several time points, and tagged RNA is biotinylated, captured on streptavidin beads and sequenced. 4sUDRB-seq enables the comparison of elongation speeds between different developmental stages or different cell types, and it allows the impact of specific transcription factors on transcription elongation speed versus TAE to be studied. RNA preparation takes ∼4 d to complete, with deep sequencing requiring an additional ∼4-11 d plus 1-3 d for bioinformatics analysis. The experimental protocol requires basic molecular biology skills, whereas data analysis requires knowledge in bioinformatics, particularly MATLAB and the Linux environment.


Subject(s)
Dichlororibofuranosylbenzimidazole/chemistry , RNA Polymerase II/metabolism , Reverse Transcriptase Polymerase Chain Reaction/methods , Sequence Analysis, RNA/methods , Thiouridine/metabolism , Transcription Elongation, Genetic , Biotin/chemistry , Genome , HeLa Cells , Humans , RNA/isolation & purification , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , Reproducibility of Results , Sequence Analysis, RNA/instrumentation , Streptavidin/chemistry , Thiouridine/chemistry
14.
Cell ; 159(3): 514-29, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25417104

ABSTRACT

All domains of life feature diverse molecular clock machineries that synchronize physiological processes to diurnal environmental fluctuations. However, no mechanisms are known to cross-regulate prokaryotic and eukaryotic circadian rhythms in multikingdom ecosystems. Here, we show that the intestinal microbiota, in both mice and humans, exhibits diurnal oscillations that are influenced by feeding rhythms, leading to time-specific compositional and functional profiles over the course of a day. Ablation of host molecular clock components or induction of jet lag leads to aberrant microbiota diurnal fluctuations and dysbiosis, driven by impaired feeding rhythmicity. Consequently, jet-lag-induced dysbiosis in both mice and humans promotes glucose intolerance and obesity that are transferrable to germ-free mice upon fecal transplantation. Together, these findings provide evidence of coordinated metaorganism diurnal rhythmicity and offer a microbiome-dependent mechanism for common metabolic disturbances in humans with aberrant circadian rhythms, such as those documented in shift workers and frequent flyers.


Subject(s)
Circadian Clocks , Circadian Rhythm , Glucose Intolerance , Microbiota , Animals , Dysbiosis/microbiology , Dysbiosis/physiopathology , Feeding Behavior , Homeostasis , Humans , Jet Lag Syndrome/physiopathology , Metabolic Diseases/microbiology , Metabolic Diseases/physiopathology , Mice , Obesity/metabolism , Sleep
15.
Nature ; 514(7521): 181-6, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25231862

ABSTRACT

Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.


Subject(s)
Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Glucose Intolerance/chemically induced , Glucose Intolerance/microbiology , Microbiota/drug effects , Sweetening Agents/adverse effects , Animals , Anti-Bacterial Agents/pharmacology , Aspartame/adverse effects , Body Weight/drug effects , Diet, High-Fat , Dietary Fats/pharmacology , Feces/microbiology , Female , Germ-Free Life , Glucose/metabolism , Glucose Intolerance/metabolism , Humans , Male , Metabolic Syndrome/chemically induced , Metabolic Syndrome/metabolism , Metabolic Syndrome/microbiology , Mice , Mice, Inbred C57BL , Saccharin/administration & dosage , Saccharin/adverse effects , Sucrose/adverse effects , Sucrose/analogs & derivatives , Waist-Hip Ratio
16.
Genome Biol ; 15(5): R69, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24887486

ABSTRACT

Although transcriptional elongation by RNA polymerase II is coupled with many RNA-related processes, genomewide elongation rates remain unknown. We describe a method, called 4sUDRB-seq, based on reversible inhibition of transcription elongation coupled with tagging newly transcribed RNA with 4-thiouridine and high throughput sequencing to measure simultaneously with high confidence genome-wide transcription elongation rates in cells. We find that most genes are transcribed at about 3.5 Kb/min, with elongation rates varying between 2 Kb/min and 6 Kb/min. 4sUDRB-seq can facilitate genomewide exploration of the involvement of specific elongation factors in transcription and the contribution of deregulated transcription elongation to various pathologies.


Subject(s)
Dichlororibofuranosylbenzimidazole/pharmacology , RNA Polymerase II/metabolism , Thiouridine/metabolism , Transcription Elongation, Genetic , Genome, Human , HeLa Cells , Humans , Sequence Analysis, RNA/methods
17.
Nature ; 504(7479): 282-6, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24172903

ABSTRACT

Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3ß signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Animals , Blastocyst/cytology , Cellular Reprogramming , Chimera/embryology , Chromatin/metabolism , DNA Methylation , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Female , Germ Layers/cytology , Histones/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Male , Mice , Morula/cytology , Organogenesis , Promoter Regions, Genetic/genetics , Regenerative Medicine , Reproducibility of Results , Signal Transduction , X Chromosome Inactivation
18.
Nature ; 502(7469): 65-70, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24048479

ABSTRACT

Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.


Subject(s)
Cellular Reprogramming/physiology , Induced Pluripotent Stem Cells/physiology , Models, Biological , Animals , Cell Line , Cells, Cultured , Cellular Reprogramming/genetics , DNA-Binding Proteins/genetics , Embryonic Stem Cells , Female , Gene Expression Regulation , HEK293 Cells , Humans , Kruppel-Like Factor 4 , Male , Mice , Transcription Factors/genetics
19.
Mol Cell ; 50(6): 869-81, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23747012

ABSTRACT

The initial step in microRNA (miRNA) biogenesis requires processing of the precursor miRNA (pre-miRNA) from a longer primary transcript. Many pre-miRNAs originate from introns, and both a mature miRNA and a spliced RNA can be generated from the same transcription unit. We have identified a mechanism in which RNA splicing negatively regulates the processing of pre-miRNAs that overlap exon-intron junctions. Computational analysis identified dozens of such pre-miRNAs, and experimental validation demonstrated competitive interaction between the Microprocessor complex and the splicing machinery. Tissue-specific alternative splicing regulates maturation of one such miRNA, miR-412, resulting in effects on its targets that code a protein network involved in neuronal cell death processes. This mode of regulation specifically controls maturation of splice-site-overlapping pre-miRNAs but not pre-miRNAs located completely within introns or exons of the same transcript. Our data present a biological role of alternative splicing in regulation of miRNA biogenesis.


Subject(s)
Alternative Splicing , Exons , Introns , MicroRNAs/biosynthesis , Animals , Base Sequence , Cell Death/genetics , Gene Regulatory Networks , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Inverted Repeat Sequences , Mice , MicroRNAs/genetics , Molecular Sequence Data , Multigene Family , Neurons/physiology , Nucleic Acid Conformation , Proteins/metabolism , RNA Interference , RNA Splice Sites , RNA-Binding Proteins , Ribonuclease III/genetics , Ribonuclease III/metabolism
20.
J Mol Diagn ; 14(5): 510-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22749746

ABSTRACT

For patients with primary lung cancer, accurate determination of the tumor type significantly influences treatment decisions. However, techniques and methods for lung cancer typing lack standardization. In particular, owing to limited tumor sample amounts and the poor quality of some samples, the classification of primary lung cancers using small preoperative biopsy specimens presents a diagnostic challenge using current tools. We previously described a microRNA-based assay (miRview squamous; Rosetta Genomics Ltd., Rehovot, Israel) that accurately differentiates between squamous and nonsquamous non-small cell lung cancer. Herein, we describe the development and validation of an assay that differentiates between the four main types of lung cancer: squamous cell carcinoma, nonsquamous non-small cell lung cancer, carcinoid, and small cell carcinoma. The assay, miRview lung (Rosetta Genomics Ltd.), is based on the expression levels of eight microRNAs, measured using a sensitive quantitative RT-PCR platform. It was validated on an independent set of 451 samples, more than half of which were preoperative cytologic samples (fine-needle aspiration and bronchial brushing and washing). The assay returned a result for more than 90% of the samples with overall accuracy of 94% (95% CI, 91% to 96%), with similar performance observed in pathologic and cytologic samples. Thus, miRview lung is a simple and reliable diagnostic assay that offers an accurate and standardized classification tool for primary lung cancer using pathologic and cytologic samples.


Subject(s)
Lung Neoplasms/classification , Lung Neoplasms/diagnosis , MicroRNAs/genetics , Molecular Diagnostic Techniques/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Oligonucleotide Array Sequence Analysis/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL