Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J R Soc Interface ; 19(188): 20210696, 2022 03.
Article in English | MEDLINE | ID: mdl-35317653

ABSTRACT

Adaptive evolution of dispersal strategies is one mechanism by which species can respond to rapid environmental changes. However, under rapid anthropogenic fragmentation, the evolution of dispersal may be limited, and species may be unable to adequately adapt to fragmented landscapes. Here, we develop a spatially explicit model to investigate the evolution of dispersal kernels under various combinations of fragmentation dynamics and initial conditions. We also study the consequences of modelling an evolutionary process in which dispersal phenotypes continuously and gradually shift in phenotype space in a manner corresponding to a polygenic underlying genetic architecture. With rapid fragmentation rates, we observed the emergence of long-term transient states in which dispersal strategies are not well suited to fragmented landscapes. We also show that the extent and length of these transient states depend on the pre-fragmentation dispersal strategy of the species, as well as on the rate of the fragmentation process leading to the fragmented landscape. In an increasingly fragmented world, understanding the ability of populations to adapt, and the effects that rapid fragmentation has on the evolution of dispersal, is critical for an informed assessment of species viability in the Anthropocene.


Subject(s)
Phenotype
2.
Insects ; 12(2)2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33567781

ABSTRACT

Ants play a dual role in their interaction with plant seeds. In deserts, the consumption of seeds by granivorous ants is common, whereas mutualistic seed dispersal, often associated with scavenging ants, is rarely documented. We evaluated the contribution of both ant guilds to efficient seed dispersal of an ant-dispersed plant, Sternbergia clusiana, in a desert ecosystem. We presented seed to colonies of three species of desert ants from the Cataglyphis (scavengers) and Messor (granivorous) genera. We recorded seed consumption, ejection from the nest, and seed transportation to potentially beneficial microhabitats. We evaluated microhabitat quality by testing the association between habitat types and the plant at various life stages. As expected, granivores mainly consumed the seeds, whereas scavengers consumed the elaiosome (seed appendage serving as a reward), but left the seeds intact. Moreover, scavenging ants relocated the seeds much further than granivores, mainly to shrub patches. The disproportional distribution of the plant under shrubs at several life stages suggests that this microhabitat is beneficial for the plant. Overall, while granivores seem to mainly harm seed dispersal, we provide the first evidence for the beneficial contribution of scavenging ants in deserts, showing they exhibit the same suite of characteristics that render them efficient seed dispersers in other ecosystems.

3.
Ecol Evol ; 10(11): 4665-4676, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32551051

ABSTRACT

The evolution of dispersal at range margins received much attention recently, especially in the context of dynamic range shifts, such as those following climate change. However, much less attention has been devoted to study variation in and selection on dispersal at nonexpanding range margins, where populations are often small and isolated, and empirical test is dearly missing. To fill this gap, we tested whether dispersal of an ant-dispersed perennial plant (Sternbergia clusiana) is quantitatively and/or qualitatively reduced toward a nonexpanding range margin. We evaluated plant investment in dispersal structures (elaiosome), seed removal rates, and the relative abundance, activity, and behavior of low- and high-quality seed-dispersing ants in six sites ranging from mesic Mediterranean site to arid site (>600 to <100 mm of annual rainfall, respectively), which marks the southern range margin of the species. In a set of cafeteria and baiting experiments, we found that overall seed removal rates, the contribution of high-quality dispersers, maximum dispersal distance and dispersal-conducive ant behavior decreased toward range margins. These findings agree with a lower investment in reward by range margin plant populations, as reflected by lower elaiosome/seed ratio, but not by variation in the reward chemistry. More than variation in traits controlled by the plants, the variation in ant-seed interactions could be attributed to reduced presence and activity of the more efficient seed-dispersing ants in the marginal populations. Specifically, we found a mismatch between local distribution of potentially effective seed dispersers and that of the plant, even though those dispersers were observed in the study site. Interestingly, although the observed variation in the outcome of ant-seed interactions supported the prediction of reduced dispersal at nonexpanding range margins with small and isolated populations, the underlying mechanism seems to be incidental difference in the seed-dispersing ant community rather than a plant-mediated response to selection.

4.
Am J Bot ; 107(3): 436-444, 2020 03.
Article in English | MEDLINE | ID: mdl-32072626

ABSTRACT

PREMISE: Intraspecific variation in diaspore characteristics could affect various aspects of plant performance at the population, individual plant, and seed levels. We quantified variation in dispersal traits in a wind-dispersed annual, Geropogon hybridus (Asteraceae), focusing on continuous morphological traits of dispersive diaspores and their relationships to dispersal ability and seedling emergence. METHODS: We measured the morphological traits, terminal velocity, and seedling emergence of 1140 seeds from 10 populations in two successive years. We assessed the variation in traits among three hierarchical levels of organization and between years, and quantified their effects on diaspore terminal velocity and seedling emergence. RESULTS: Diaspore morphological traits varied substantially at the population, plant, and diaspore levels. Variables of pappus geometry, especially pappus width and pappus opening angle, were consistent between years and were found to be the best predictors of diaspore terminal velocity and seedling emergence. There was a significant negative relationship between diaspore terminal velocity and seedling emergence. CONCLUSIONS: The intraspecific variation in diaspore traits is sufficiently large to substantially allow a dispersal-dormancy trade-off of individual diaspores. Our results support the hypothesis that traits of dispersive diaspores evolve in concert to select for increased dispersal potential, and provide an avenue to predict plant offspring performance through simply measured traits.


Subject(s)
Asteraceae , Seed Dispersal , Seedlings , Seeds , Wind
5.
Sci Total Environ ; 707: 135630, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31784173

ABSTRACT

Aquaculture contributes to global food security, producing over 70 million tons of fish and aquatic products annually. Protein rich fish feeds, together with labor costs are the most expensive component costs in aquaculture. Feed application is given as percent of fish weight and therefore, reliable biomass assessment is essential for profitable and environmentally sound aquaculture. Fish biomass estimates are typically based on sampling <2% of the fish population. The goals of this research were to estimate potential biases associated with fish sampling in recirculating aquaculture systems (RAS), and the potential economic and environmental implications of such biased estimations. The size of the biased sampling-based estimates of fish biomass in two cultured species was shown to be larger than what the confidence interval suggests, even after >20% of the population was sampled. Such biases, if indeed common, will most likely result in over/underfeeding, both entailing negative economic and environmental consequences. We advocate conducting similar studies with major cultured fish to generate "bias correction tables" for adjusting fish feeding rate to bias-corrected biomass. These will help reduce the potential economic losses and negative environmental impacts of aquaculture practice.


Subject(s)
Aquaculture , Fishes , Animals , Environment , Food Supply , Seafood
6.
Microorganisms ; 7(11)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739595

ABSTRACT

Allelopathic interactions mediated by bacteriocins production serve microorganisms in the never-ending battle for resources and living space. Competition between the bacteriocin producer and sensitive populations results in the exclusion of one or the other depending on their initial frequencies, the structure of their habitat, their community density and their nutrient availability. These interactions were extensively studied in bacteriocins produced by Escherichia coli, the colicins. In spatially structured environments where interactions are local, colicin production has been shown to be advantageous to the producer population, allowing them to compete even when initially rare. Yet, in a well-mixed, unstructured environment where interactions are global, rare producer populations cannot invade a common sensitive population. Here we are showing, through an experimental model, that colicin-producers can outcompete sensitive and producer populations when the colicin production rates are enhanced. In fact, colicin production rates were proportional to the producer competitive fitness and their overall success in out-competing opponents when invading at very low initial frequencies. This ability of rare populations to invade established communities maintains diversity and allows the dispersal of beneficial traits.

7.
AoB Plants ; 11(4): plz016, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31346404

ABSTRACT

As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward.

8.
AoB Plants ; 11(3): plz027, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31139335

ABSTRACT

Seed dispersal by ants (myrmecochory) is an asymmetric, presumably mutualistic interaction, where a few ant species benefit many plants. Myrmecochorous plants express specialized adaptations, most notably a large elaiosome, which promote interactions with efficient seed dispersers while decreasing interactions with poor dispersers, resulting in de facto partner choice. However, because variation in plants' investment in reward and ant response to them may vary spatially and temporally, it is unclear whether such specialization is consistent along geographic gradients; especially towards myrmecochory's range margin. To answer this question on context-dependent partner choice, we first estimated variation in reward investment by co-occurring myrmecochores along a steep environmental gradient in a Mediterranean region. Second, we tested whether variation in plant investment in reward was positively and consistently correlated with the quality of dispersal plant received along the same gradient. Using in situ cafeteria experiments, we simultaneously presented diaspores of locally co-occurring myrmecochorous species to ants of two guilds representing high- and low-quality dispersers. We then recorded ant-seed behaviour, seed preference and seed removal rates for each ant guild. We found both overall and within-site high variation among plant species in the total and relative investment in elaiosomes. Both ant guilds removed substantial proportion of the seeds. However, scavenging ants (high-quality dispersers) clearly preferred diaspores with larger elaiosomes, whereas granivorous ants (low-quality dispersers) exhibited no preference. Furthermore, both the variation in plant traits and the corresponding response of different ant guilds were consistent along the studied geographic gradient. This consistency holds even when granivores, which removed seeds in a non-selective fashion and provided apparently low-quality seed dispersal services, were, at least numerically, the dominant ant guild. This dominance and the consistency of the partner choice shed light on the functionality of elaiosomes at the margins of myrmecochory's distribution.

9.
Oecologia ; 180(1): 231-42, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26350785

ABSTRACT

Grazing plays an important role in shaping ecological communities in human-related ecosystems. Although myriad studies have explored the joint effect of grazing and climate on plant communities, this interactive effect has rarely been studied in animals. We hypothesized that the effect of grazing on the reptile community varies along a climatic gradient in relation to the effect of grazing on habitat characteristics, and that grazing differentially affects reptiles of different biogeographic regions. We tested our hypotheses by collecting data on environmental characteristics and by trapping reptiles in four heterogeneous landscapes experiencing differing grazing intensities and distributed along a sharp climatic gradient. We found that while reptile diversity increased with grazing intensity at the mesic end of the gradient, it decreased with grazing intensity at the arid end. Moreover, the proportion of reptile species of differing biogeographic origins varied with the interactive effect of climate and grazing. The representation of species originating in arid biogeographic zones was highest at the arid end of the climatic gradient, and representation increased with grazing intensity within this area. Regardless of the climatic context, increased grazing pressure results in a reduction in vegetation cover and thus in changes in habitat characteristics. By reducing vegetation cover, grazing increased habitat heterogeneity in the dense mesic sites and decreased habitat heterogeneity in the arid sites. Thus, our results suggest that the same direction of habitat alteration caused by grazing may have opposite effects on biodiversity and community composition in different climatic contexts.


Subject(s)
Biodiversity , Climate , Ecosystem , Herbivory , Livestock , Plants , Reptiles , Agriculture , Animal Feed , Animals , Diet , Humans , Population Dynamics , Water
11.
Environ Entomol ; 41(3): 463-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22732603

ABSTRACT

The complex interplay between species along environmental gradients ultimately shapes their distributions and additional community interactions. Ant-mediated seed dispersal fails in the wettest habitat of deciduous forest in eastern North America, and we examine whether this pattern corresponds with colony distributions for seed-dispersing ants and associated heterogeneity in abiotic and biotic variables. Specifically, we used spatial variation in soil moisture, temperature and diffuse light along natural habitat gradients and experimentally manipulated soil moisture gradients to examine ant habitat selection. We also examined niche segregation between effective (Aphaenogaster spp.) and ineffective (Lasius alienus Foerster) seed-dispersing ants across these environmental gradients. Whereas most research links ant foraging and nesting with temperature gradients, we find niche segregation between Aphaenogaster spp. and L. alienus by soil moisture along naturally occurring gradients and in experimentally irrigated upland habitat. The failure of Aphaenogaster spp. to occupy the wettest habitats, where L. alienus is present, is consistent with observed seed dispersal failure in these habitats. These results indicate that environmental heterogeneity drives niche segregation between effective (Aphaenogaster spp.) and ineffective (L. alienus) seed dispersers so each occupies distinct habitat. Most forest understory plants rely on ants for seed dispersal. Our research implies that climate-mediated interactions between effective and ineffective seed dispersing ant species may structure the microhabitat distributions for woodland herbs.


Subject(s)
Ants/physiology , Ecosystem , Food Chain , Nesting Behavior , Animals , Georgia , Humidity , North Carolina , Population Density , Seasons , Seeds/growth & development , Species Specificity
12.
Ecology ; 90(9): 2503-12, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19769128

ABSTRACT

From 1938 to 1972, the range of California sea otters (Enhydra lutris nereis) expanded with the northern and southern fronts spreading at rates of approximately 1.4 km/yr and 3.1 km/yr, respectively. J. A. Lubina and S. A. Levin proposed the following three factors to explain the large disparity in spread rates: (1) regional differences in dispersal; (2) regional differences in population growth; and (3) advection due to the known presence of a southerly flowing offshore current. While Lubina and Levin used a reaction-diffusion framework to argue for large differences in dispersal, our approach uses a stage-structured integrodifference matrix model to show that relatively minor differences in survival provide a more parsimonious explanation for the disparity in spread rates; especially if the survival rates between the northern and southern groups differ in more than one life stage. The argument is made that many of the present estimates for otter survival rates span intervals wide enough to explain the different spread rates--even more so in the likely case that advection plays at least a minor role in otter movement.


Subject(s)
Demography , Models, Biological , Otters/physiology , Animals , California , Pacific Ocean
13.
BMC Microbiol ; 9: 165, 2009 Aug 12.
Article in English | MEDLINE | ID: mdl-19674447

ABSTRACT

BACKGROUND: The ability of a bacterial strain to competitively exclude or displace other strains can be attributed to the production of narrow spectrum antimicrobials, the bacteriocins. In an attempt to evaluate the importance of bacteriocin production for Escherichia coli strain residence in the gastrointestinal tract, a murine model experimental evolution study was undertaken. RESULTS: Six colicin-producing, yet otherwise isogenic, E. coli strains were administered and established in the large intestine of streptomycin-treated mice. The strains' persistence, population density, and doubling time were monitored over a period of 112 days. Early in the experiment only minor differences in population density between the various colicin-producing and the non-producing control strains were detected. However, over time, the density of the control strains plummeted, while that of the colicin-producing strains remained significantly higher (F(7,66) = 2.317; P < 0.0008). CONCLUSION: The data presented here support prior claims that bacteriocin production may play a significant role in the colonization of E. coli in the gastrointestinal tract. Further, this study suggests that the ability to produce bacteriocins may prove to be a critical factor in determining the success of establishing probiotic E. coli in the gastrointestinal tract of humans and animals.


Subject(s)
Colicins/biosynthesis , Escherichia coli Infections/microbiology , Escherichia coli/pathogenicity , Gastrointestinal Tract/microbiology , Animals , Bacteriocins/biosynthesis , Escherichia coli/metabolism , Female , Mice , Phenotype
14.
Ecol Lett ; 11(3): 224-34, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18047586

ABSTRACT

Foraging traits of seed predators are expected to impact the spatial structure of plant populations, community dynamics and diversity. Yet, many of the key mechanisms governing distance- or density-dependent seed predation are poorly understood. We designed an extensive set of field experiments to test how seed predation by two harvester ant species interact with seed dispersal in shaping the spatial patterns of surviving seeds. We show that the Janzen-Connell establishment pattern can be generated by central-place foragers even if their focal point is located away from the seed source. Furthermore, we found that differences in the social behaviour of seed predators influence their sensitivity to seed density gradients and yield opposing spatial patterns of surviving seeds. Our results support the predictions of a recent theoretical framework that unifies apparently opposing plant establishment patterns, and suggest that differences in foraging traits among seed predators can drive divergent pathways of plant community dynamics.


Subject(s)
Ants/physiology , Appetitive Behavior/physiology , Ecosystem , Seeds , Animals , Models, Biological , Oryza , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...