ABSTRACT
The small Indian mongoose (Urva auropunctata) is the primary terrestrial wildlife rabies reservoir on at least four Caribbean islands, including Puerto Rico. In Puerto Rico, mongooses represent a risk to public health, based on direct human exposure and indirectly through the transmission of rabies virus to domestic animals. To date, the fundamental ecological relationships of space use among mongooses and between mongooses and domestic animals remain poorly understood. This study is the first to report mongoose home range estimates based on GPS telemetry, as well as concurrent space use among mongooses and free roaming domestic dogs (FRDD; Canis lupus familiaris). Mean (± SE) home range estimates from 19 mongooses in this study (145 ± 21 ha and 60 ± 14 ha for males and females, respectively) were greater than those reported in prior radiotelemetry studies in Puerto Rico. At the scale of their home range, mongooses preferentially used dry forest and shrubland areas, but tended to avoid brackish water vegetation, salt marshes, barren lands and developed areas. Home ranges from five FRDDs were highly variable in size (range 13-285 ha) and may be influenced by availability of reliable anthropogenic resources. Mongooses displayed high home range overlap (general overlap index, GOI = 82%). Home range overlap among mongooses and FRDDs was intermediate (GOI = 50%) and greater than home range overlap by FRDDs (GOI = 10%). Our results provide evidence that space use by both species presents opportunities for interspecific interaction and contact and suggests that human provisioning of dogs may play a role in limiting interactions between stray dogs and mongooses.
Subject(s)
Herpestidae , Rabies , Female , Male , Animals , Dogs , Humans , Rabies/epidemiology , Rabies/veterinary , Puerto Rico/epidemiology , Homing Behavior , Animals, DomesticABSTRACT
The small Indian mongoose (Urva auropuncata) is a rabies reservoir in Puerto Rico and accounts for over 70% of reported animal rabies cases annually. The presence of rabies virus-neutralizing antibodies (RVNA) is often used as a tool to measure exposure to rabies virus in wildlife populations. We conducted a serosurvey of mongooses at 11 sites representing six habitat types across Puerto Rico. We collected a serum sample from 464 individual mongooses during 2014-21. Overall, 80/464 (17.0%; 95% confidence interval, 14.1-20.9%; 55 male, 23 female, and two sexes not recorded) of individual mongooses sampled across all habitats were RVNA positive. The geometric mean (SD) RVNA titer for 80 unique seropositive animals was 0.58 (2.92) IU/mL. Our models indicated that the probability of mongooses being RVNA seropositive mostly varied by habitat, with some influence of sex in the individual-level analyses. Population-level RVNA seroprevalence is dynamic in mongoose populations, but these data may shed light on rabies virus transmission across regions to help inform rabies management activities in Puerto Rico.
Subject(s)
Herpestidae , Rabies Vaccines , Rabies virus , Rabies , Animals , Male , Female , Rabies/epidemiology , Rabies/veterinary , Puerto Rico/epidemiology , Seroepidemiologic Studies , Antibodies, ViralABSTRACT
The small Indian mongoose (Herpestes auropunctatus) is a rabies reservoir in areas of the Caribbean including Puerto Rico, but no rabies vaccination program targeting this host exists. We used two derivatives of iophenoxic acid (IPA) to evaluate placebo oral rabies vaccine bait uptake by mongooses in southwestern Puerto Rico. We hand-distributed baits at an application rate of 200 baits/km2 at three, 400 ha, sites during autumn 2016 and spring 2017. Each site contained 90-100 cage traps in a 100 ha central trapping area. We used ethyl-IPA as a biological marker during the autumn and methyl-IPA during the spring. We live captured mongooses for 10 consecutive days, beginning 1 wk following bait application. We obtained a serum sample from captured mongooses and analyzed the sera for ethyl- and methyl-IPA by liquid chromatography-mass spectrometry. During autumn 2016, 63% (55/87) mongooses sampled were positive for ethyl-IPA. In spring 2017, 69% (85/123) of mongooses were positive for methyl-IPA. Pooling seasons, accounting for recaptures between years, and disregarding marker type, 74% (133/179) unique mongooses were positive for IPA biomarker, indicating bait consumption during either the autumn, spring, or both trials. We conclude that distributing baits at an application rate of 200 baits/km2 is sufficient to reach over 60% of the target mongoose population in dry forest habitats of Puerto Rico.
Subject(s)
Disease Reservoirs/veterinary , Rabies Vaccines/immunology , Rabies/veterinary , Administration, Oral , Animals , Biomarkers/blood , Disease Reservoirs/virology , Herpestidae , Hispanic or Latino , Iopanoic Acid/administration & dosage , Iopanoic Acid/metabolism , Puerto Rico , Rabies/prevention & control , Rabies Vaccines/administration & dosage , VaccinationABSTRACT
Human activities create novel food resources that can alter wildlife-pathogen interactions. If resources amplify or dampen, pathogen transmission probably depends on both host ecology and pathogen biology, but studies that measure responses to provisioning across both scales are rare. We tested these relationships with a 4-year study of 369 common vampire bats across 10 sites in Peru and Belize that differ in the abundance of livestock, an important anthropogenic food source. We quantified innate and adaptive immunity from bats and assessed infection with two common bacteria. We predicted that abundant livestock could reduce starvation and foraging effort, allowing for greater investments in immunity. Bats from high-livestock sites had higher microbicidal activity and proportions of neutrophils but lower immunoglobulin G and proportions of lymphocytes, suggesting more investment in innate relative to adaptive immunity and either greater chronic stress or pathogen exposure. This relationship was most pronounced in reproductive bats, which were also more common in high-livestock sites, suggesting feedbacks between demographic correlates of provisioning and immunity. Infection with both Bartonella and haemoplasmas were correlated with similar immune profiles, and both pathogens tended to be less prevalent in high-livestock sites, although effects were weaker for haemoplasmas. These differing responses to provisioning might therefore reflect distinct transmission processes. Predicting how provisioning alters host-pathogen interactions requires considering how both within-host processes and transmission modes respond to resource shifts.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Subject(s)
Bartonella Infections/veterinary , Chiroptera/immunology , Immunity, Innate , Mycoplasma Infections/veterinary , Reproduction/physiology , Adaptive Immunity , Animals , Bartonella/immunology , Bartonella Infections/epidemiology , Bartonella Infections/immunology , Bartonella Infections/microbiology , Belize/epidemiology , Chiroptera/microbiology , Eating/physiology , Female , Host-Pathogen Interactions/immunology , Immunoglobulin G , Livestock/physiology , Lymphocytes/immunology , Lymphocytes/microbiology , Male , Mycoplasma/immunology , Mycoplasma Infections/epidemiology , Mycoplasma Infections/immunology , Mycoplasma Infections/microbiology , Neutrophils/immunology , Neutrophils/microbiology , Peru/epidemiology , Population DynamicsABSTRACT
The small Indian mongoose (Herpestes auropunctatus) was introduced to several Caribbean Islands to control rat (Rattus spp.) damage to sugarcane plantations. Mongooses failed at suppressing rat populations and are now considered pests throughout most of their introduced range. Importantly, mongooses are rabies reservoirs on several Caribbean Islands. In Puerto Rico, mongooses have been implicated in up to 70% of reported animal rabies cases. There is no rabies vaccination program for wildlife in Puerto Rico, and data on rabies in mongooses are limited. We conducted a serosurvey of mongooses in two different ecologic environments in Puerto Rico: El Yunque National Forest and Cabo Rojo National Wildlife Refuge. We collected 119 serum samples from 112 mongooses, 44 (39.3%) of which were positive for rabies virus-neutralizing antibodies. We also collected oral swabs from 147 mongooses, including 88 from which we also collected serum. No oral swabs were positive for rabies virus RNA. Our data support previous research suggesting rabies virus is circulating within the mongoose population on Puerto Rico.
Subject(s)
Herpestidae , Rabies/veterinary , Animals , Puerto Rico/epidemiologyABSTRACT
BACKGROUND: Rabies is a fatal encephalitis caused by rabies virus, of the genus Lyssavirus. The principal reservoir for rabies in Latin America is the common vampire bat (Desmodus rotundus), which feeds routinely on the blood of cattle, and when livestock are scarce, may prey on other mammals, including humans. Although rabies is endemic in common vampire bat populations in Guatemala, there is limited research on the extent of exposure to bats among human populations living near bat refuges. RESULTS: A random sample of 270 of 473 households (57%) in two communities located within 2 Km of a known bat roost was selected and one adult from each household was interviewed. Exposure to bats (bites, scratches or bare skin contact) was reported by 96 (6%) of the 1,721 residents among the selected households. Of those exposed, 40% received rabies post-exposure prophylaxis. Four percent of household respondents reported that they would seek rabies post exposure prophylaxis if they were bitten by a bat. CONCLUSIONS: These findings demonstrate that exposure to bats in communities near bat roosts is common but recognition of the potential for rabies transmission from bats is low. There is a need for educational outreach to raise awareness of bat-associated rabies, prevent exposures to bats and ensure appropriate health-seeking behaviours for bat-inflicted wounds, particularly among communities living near bat roosts in Guatemala.
Subject(s)
Chiroptera , Disease Vectors , Health Knowledge, Attitudes, Practice , Rabies/transmission , Animals , Cross-Sectional Studies , Guatemala/epidemiology , HumansABSTRACT
Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation.
Subject(s)
Chiroptera/virology , Rabies virus/isolation & purification , Rabies/veterinary , Animal Structures/virology , Animals , Cluster Analysis , Female , Guatemala/epidemiology , Male , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Rabies/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Viral Structural Proteins/geneticsABSTRACT
Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris) from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses.
Subject(s)
Chiroptera/virology , Disease Reservoirs/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Orthomyxoviridae Infections/genetics , Phylogeny , Animals , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Peru/epidemiologyABSTRACT
Polyomaviruses (PyVs) have been identified in a wide range of avian and mammalian species. However, little is known about their occurrence, genetic diversity and evolutionary history in bats, even though bats are important reservoirs for many emerging viral pathogens. This study screened 380 specimens from 35 bat species from Kenya and Guatemala for the presence of PyVs by semi-nested pan-PyV PCR assays. PyV DNA was detected in 24 of the 380 bat specimens. Phylogenetic analysis revealed that the bat PyV sequences formed 12 distinct lineages. Full-genome sequences were obtained for seven representative lineages and possessed similar genomic features to known PyVs. Strikingly, this evolutionary analysis revealed that the bat PyVs were paraphyletic, suggestive of multiple species jumps between bats and other mammalian species, such that the theory of virus-host co-divergence for mammalian PyVs as a whole could be rejected. In addition, evidence was found for strong heterogeneity in evolutionary rate and potential recombination in a number of PyV complete genomes, which complicates both phylogenetic analysis and virus classification. In summary, this study revealed that bats are important reservoirs of PyVs and that these viruses have a complex evolutionary history.
Subject(s)
Chiroptera/virology , DNA, Viral/genetics , Evolution, Molecular , Genetic Variation , Genome, Viral , Polyomavirus/genetics , Polyomavirus/isolation & purification , Animals , Cluster Analysis , DNA, Viral/chemistry , Guatemala , Kenya , Molecular Sequence Data , Phylogeny , Polyomavirus/classification , Sequence Analysis, DNAABSTRACT
In May of 2010, two communities (Truenococha and Santa Marta) reported to be at risk of vampire bat depredation were surveyed in the Province Datem del Marañón in the Loreto Department of Perú. Risk factors for bat exposure included age less than or equal to 25 years and owning animals that had been bitten by bats. Rabies virus neutralizing antibodies (rVNAs) were detected in 11% (7 of 63) of human sera tested. Rabies virus ribonucleoprotein (RNP) immunoglobulin G (IgG) antibodies were detected in the sera of three individuals, two of whom were also seropositive for rVNA. Rabies virus RNP IgM antibodies were detected in one respondent with no evidence of rVNA or RNP IgG antibodies. Because one respondent with positive rVNA results reported prior vaccination and 86% (six of seven) of rVNA-positive respondents reported being bitten by bats, these data suggest nonfatal exposure of persons to rabies virus, which is likely associated with vampire bat depredation.