Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37961120

ABSTRACT

Phenotypic divergence between closely related species, including bonobos and chimpanzees (genus Pan), is largely driven by variation in gene regulation. The 3D structure of the genome mediates gene expression; however, genome folding differences in Pan are not well understood. Here, we apply machine learning to predict genome-wide 3D genome contact maps from DNA sequence for 56 bonobos and chimpanzees, encompassing all five extant lineages. We use a pairwise approach to estimate 3D divergence between individuals from the resulting contact maps in 4,420 1 Mb genomic windows. While most pairs were similar, ∼17% were predicted to be substantially divergent in genome folding. The most dissimilar maps were largely driven by single individuals with rare variants that produce unique 3D genome folding in a region. We also identified 89 genomic windows where bonobo and chimpanzee contact maps substantially diverged, including several windows harboring genes associated with traits implicated in Pan phenotypic divergence. We used in silico mutagenesis to identify 51 3D-modifying variants in these bonobo-chimpanzee divergent windows, finding that 34 or 66.67% induce genome folding changes via CTCF binding motif disruption. Our results reveal 3D genome variation at the population-level and identify genomic regions where changes in 3D folding may contribute to phenotypic differences in our closest living relatives.

2.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187606

ABSTRACT

Understanding variation in chromatin contact patterns across human populations is critical for interpreting non-coding variants and their ultimate effects on gene expression and phenotypes. However, experimental determination of chromatin contacts at a population-scale is prohibitively expensive. To overcome this challenge, we develop and validate a machine learning method to quantify the diversity 3D chromatin contacts at 2 kilobase resolution from genome sequence alone. We then apply this approach to thousands of diverse modern humans and the inferred human-archaic hominin ancestral genome. While patterns of 3D contact divergence genome-wide are qualitatively similar to patterns of sequence divergence, we find that 3D divergence in local 1-megabase genomic windows does not follow sequence divergence. In particular, we identify 392 windows with significantly greater 3D divergence than expected from sequence. Moreover, 26% of genomic windows have rare 3D contact variation observed in a small number of individuals. Using in silico mutagenesis we find that most sequence changes to do not result in changes to 3D chromatin contacts. However in windows with substantial 3D divergence, just one or a few variants can lead to divergent 3D chromatin contacts without the individuals carrying those variants having high sequence divergence. In summary, inferring 3D chromatin contact maps across human populations reveals diverse contact patterns. We anticipate that these genetically diverse maps of 3D chromatin contact will provide a reference for future work on the function and evolution of 3D chromatin contact variation across human populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...