Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Cancer Discov ; 14(4): 663-668, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571421

ABSTRACT

SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166867, 2024 01.
Article in English | MEDLINE | ID: mdl-37648039

ABSTRACT

Metastasis in oesophageal adenocarcinoma (OAC) is an important predictor of survival. Radiological staging is used to stage metastases in patients, and guide treatment selection, but is limited by the accuracy of the approach. Improvements in staging will lead to improved clinical decision making and patient outcomes. Sequencing studies on primary tumours and pre-cancerous tissue have revealed the mutational landscape of OAC, and increasingly cheap and widespread sequencing approaches offer the potential to improve staging assessment. In this work we present an analysis of lymph node metastases found by radiological and pathological sampling, identifying new roles of the genes SMAD4 and KCNQ3 in metastasis. Through transcriptomic analysis we find that both genes are associated with canonical Wnt pathway activity, but KCNQ3 is uniquely associated with changes in planar cell polaritiy associated with non-canonical Wnt signalling. We go on to validate our observations in KCNQ3 in cell line and xenograph systems, showing that overexpression of KCNQ3 reduces wound closure and the number of metastases observed. Our results suggest both genes as novel biomarkers of metastatic risk and offer new potential routes to drug targeting.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Humans , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Esophageal Neoplasms/pathology , Lymphatic Metastasis/genetics , Mutation , Smad4 Protein/genetics
3.
Life Sci Alliance ; 6(12)2023 12.
Article in English | MEDLINE | ID: mdl-37748809

ABSTRACT

Voltage-sensitive potassium channels play an important role in controlling membrane potential and ionic homeostasis in the gut and have been implicated in gastrointestinal (GI) cancers. Through large-scale analysis of 897 patients with gastro-oesophageal adenocarcinomas (GOAs) coupled with in vitro models, we find KCNQ family genes are mutated in ∼30% of patients, and play therapeutically targetable roles in GOA cancer growth. KCNQ1 and KCNQ3 mediate the WNT pathway and MYC to increase proliferation through resultant effects on cadherin junctions. This also highlights novel roles of KCNQ3 in non-excitable tissues. We also discover that activity of KCNQ3 sensitises cancer cells to existing potassium channel inhibitors and that inhibition of KCNQ activity reduces proliferation of GOA cancer cells. These findings reveal a novel and exploitable role of potassium channels in the advancement of human cancer, and highlight that supplemental treatments for GOAs may exist through KCNQ inhibitors.


Subject(s)
Adenocarcinoma , KCNQ Potassium Channels , Humans , KCNQ Potassium Channels/genetics , KCNQ Potassium Channels/metabolism , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism , KCNQ2 Potassium Channel/physiology , Adenocarcinoma/genetics
4.
Nat Rev Cancer ; 23(10): 710-724, 2023 10.
Article in English | MEDLINE | ID: mdl-37488363

ABSTRACT

Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/prevention & control , Oncogenes , Mutation , Stem Cells , Aging
5.
Nature ; 612(7941): 787-794, 2022 12.
Article in English | MEDLINE | ID: mdl-36450980

ABSTRACT

Medulloblastoma (MB) is the most common malignant childhood brain tumour1,2, yet the origin of the most aggressive subgroup-3 form remains elusive, impeding development of effective targeted treatments. Previous analyses of mouse cerebella3-5 have not fully defined the compositional heterogeneity of MBs. Here we undertook single-cell profiling of freshly isolated human fetal cerebella to establish a reference map delineating hierarchical cellular states in MBs. We identified a unique transitional cerebellar progenitor connecting neural stem cells to neuronal lineages in developing fetal cerebella. Intersectional analysis revealed that the transitional progenitors were enriched in aggressive MB subgroups, including group 3 and metastatic tumours. Single-cell multi-omics revealed underlying regulatory networks in the transitional progenitor populations, including transcriptional determinants HNRNPH1 and SOX11, which are correlated with clinical prognosis in group 3 MBs. Genomic and Hi-C profiling identified de novo long-range chromatin loops juxtaposing HNRNPH1/SOX11-targeted super-enhancers to cis-regulatory elements of MYC, an oncogenic driver for group 3 MBs. Targeting the transitional progenitor regulators inhibited MYC expression and MYC-driven group 3 MB growth. Our integrated single-cell atlases of human fetal cerebella and MBs show potential cell populations predisposed to transformation and regulatory circuitries underlying tumour cell states and oncogenesis, highlighting hitherto unrecognized transitional progenitor intermediates predictive of disease prognosis and potential therapeutic vulnerabilities.


Subject(s)
Brain Neoplasms , Cell Transformation, Neoplastic , Fetus , Medulloblastoma , Humans , Brain Neoplasms/pathology , Cell Transformation, Neoplastic/pathology , Cerebellar Neoplasms/pathology , Cerebellum/cytology , Cerebellum/pathology , Fetus/cytology , Fetus/pathology , Medulloblastoma/pathology , Neural Stem Cells/cytology , Neural Stem Cells/pathology , Prognosis
6.
Nat Genet ; 54(12): 1827-1838, 2022 12.
Article in English | MEDLINE | ID: mdl-36175792

ABSTRACT

We identify the sodium leak channel non-selective protein (NALCN) as a key regulator of cancer metastasis and nonmalignant cell dissemination. Among 10,022 human cancers, NALCN loss-of-function mutations were enriched in gastric and colorectal cancers. Deletion of Nalcn from gastric, intestinal or pancreatic adenocarcinomas in mice did not alter tumor incidence, but markedly increased the number of circulating tumor cells (CTCs) and metastases. Treatment of these mice with gadolinium-a NALCN channel blocker-similarly increased CTCs and metastases. Deletion of Nalcn from mice that lacked oncogenic mutations and never developed cancer caused shedding of epithelial cells into the blood at levels equivalent to those seen in tumor-bearing animals. These cells trafficked to distant organs to form normal structures including lung epithelium, and kidney glomeruli and tubules. Thus, NALCN regulates cell shedding from solid tissues independent of cancer, divorcing this process from tumorigenesis and unmasking a potential new target for antimetastatic therapies.


Subject(s)
Neoplasms , Humans , Mice , Animals , Ion Channels/genetics , Membrane Proteins/genetics
7.
Genes Dev ; 36(11-12): 737-751, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35798383

ABSTRACT

The primary cilium, a signaling organelle projecting from the surface of a cell, controls cellular physiology and behavior. The presence or absence of primary cilia is a distinctive feature of a given tumor type; however, whether and how the primary cilium contributes to tumorigenesis are unknown for most tumors. Medulloblastoma (MB) is a common pediatric brain cancer comprising four groups: SHH, WNT, group 3 (G3), and group 4 (G4). From 111 cases of MB, we show that primary cilia are abundant in SHH and WNT MBs but rare in G3 and G4 MBs. Using WNT and G3 MB mouse models, we show that primary cilia promote WNT MB by facilitating translation of mRNA encoding ß-catenin, a major oncoprotein driving WNT MB, whereas cilium loss promotes G3 MB by disrupting cell cycle control and destabilizing the genome. Our findings reveal tumor type-specific ciliary functions and underlying molecular mechanisms. Moreover, we expand the function of primary cilia to translation control and reveal a molecular mechanism by which cilia regulate cell cycle progression, thereby providing new frameworks for studying cilium function in normal and pathologic conditions.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Animals , Brain Neoplasms/pathology , Cell Cycle/genetics , Cerebellar Neoplasms/genetics , Cilia/genetics , Humans , Medulloblastoma/genetics , Mice
9.
Sci Transl Med ; 13(614): eabc0497, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34613815

ABSTRACT

Childhood posterior fossa group A ependymomas (PFAs) have limited treatment options and bear dismal prognoses compared to group B ependymomas (PFBs). PFAs overexpress the oncohistone-like protein EZHIP (enhancer of Zeste homologs inhibitory protein), causing global reduction of repressive histone H3 lysine 27 trimethylation (H3K27me3), similar to the oncohistone H3K27M. Integrated metabolic analyses in patient-derived cells and tumors, single-cell RNA sequencing of tumors, and noninvasive metabolic imaging in patients demonstrated enhanced glycolysis and tricarboxylic acid (TCA) cycle metabolism in PFAs. Furthermore, high glycolytic gene expression in PFAs was associated with a poor outcome. PFAs demonstrated high EZHIP expression associated with poor prognosis and elevated activating mark histone H3 lysine 27 acetylation (H3K27ac). Genomic H3K27ac was enriched in PFAs at key glycolytic and TCA cycle­related genes including hexokinase-2 and pyruvate dehydrogenase. Similarly, mouse neuronal stem cells (NSCs) expressing wild-type EZHIP (EZHIP-WT) versus catalytically attenuated EZHIP-M406K demonstrated H3K27ac enrichment at hexokinase-2 and pyruvate dehydrogenase, accompanied by enhanced glycolysis and TCA cycle metabolism. AMPKα-2, a key component of the metabolic regulator AMP-activated protein kinase (AMPK), also showed H3K27ac enrichment in PFAs and EZHIP-WT NSCs. The AMPK activator metformin lowered EZHIP protein concentrations, increased H3K27me3, suppressed TCA cycle metabolism, and showed therapeutic efficacy in vitro and in vivo in patient-derived PFA xenografts in mice. Our data indicate that PFAs and EZHIP-WT­expressing NSCs are characterized by enhanced glycolysis and TCA cycle metabolism. Repurposing the antidiabetic drug metformin lowered pathogenic EZHIP, increased H3K27me3, and suppressed tumor growth, suggesting that targeting integrated metabolic/epigenetic pathways is a potential therapeutic strategy for treating childhood ependymomas.


Subject(s)
Ependymoma , Histones , Animals , Child , Ependymoma/genetics , Epigenesis, Genetic , Epigenomics , Histones/genetics , Humans , Metabolic Networks and Pathways , Mice
10.
Cancer Cell ; 39(11): 1519-1530.e4, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34678152

ABSTRACT

Nearly one-third of children with medulloblastoma, a malignant embryonal tumor of the cerebellum, succumb to their disease. Conventional response monitoring by imaging and cerebrospinal fluid (CSF) cytology remains challenging, and a marker for measurable residual disease (MRD) is lacking. Here, we show the clinical utility of CSF-derived cell-free DNA (cfDNA) as a biomarker of MRD in serial samples collected from children with medulloblastoma (123 patients, 476 samples) enrolled on a prospective trial. Using low-coverage whole-genome sequencing, tumor-associated copy-number variations in CSF-derived cfDNA are investigated as an MRD surrogate. MRD is detected at baseline in 85% and 54% of patients with metastatic and localized disease, respectively. The number of MRD-positive patients declines with therapy, yet those with persistent MRD have significantly higher risk of progression. Importantly, MRD detection precedes radiographic progression in half who relapse. Our findings advocate for the prospective assessment of CSF-derived liquid biopsies in future trials for medulloblastoma.


Subject(s)
Cell-Free Nucleic Acids/cerebrospinal fluid , Cerebellar Neoplasms/diagnosis , Medulloblastoma/diagnosis , Whole Genome Sequencing/methods , Biomarkers, Tumor/cerebrospinal fluid , Biomarkers, Tumor/genetics , Cerebellar Neoplasms/cerebrospinal fluid , Cerebellar Neoplasms/genetics , Child , Chromosomal Instability , DNA Copy Number Variations , Disease Progression , Female , Humans , Liquid Biopsy , Male , Medulloblastoma/cerebrospinal fluid , Medulloblastoma/genetics , Neoplasm, Residual , Prospective Studies
11.
Biomaterials ; 276: 120919, 2021 09.
Article in English | MEDLINE | ID: mdl-34419838

ABSTRACT

Peptide functionalized hyaluronic acid (HACF) cross-linked by cucurbit[8]uril (CB[8]), a new class of drug-delivery reservoirs, is used to enable improved drug bioavailability for glioblastoma tumors in patient-derived xenograft (PDX) models. The mechanical and viscoelastic properties of native human and mouse tissues are measured over 8 h via oscillatory rheology under physiological conditions. Treatment with drug-loaded hydrogels allowed for a significant survival impact of 45 % (55.5-80.5 days). A relationship between the type of PDX tumor formed-a consequence of the heterogeneic nature of GB tumors-and changes in the initial survival is observed owing to greater local pressure from stiffer tumors. These biocompatible and tailorable materials warrant use as drug delivery reservoirs in PDX resection models, where the mechanical properties can be readily adjusted to match the stiffness of local tissue and thus have potential to improve the survival of GB patients.


Subject(s)
Glioblastoma , Animals , Brain , Drug Delivery Systems , Glioblastoma/drug therapy , Humans , Hyaluronic Acid , Hydrogels , Mice , Rheology
12.
Cancer Discov ; 11(9): 2230-2247, 2021 09.
Article in English | MEDLINE | ID: mdl-33879448

ABSTRACT

Molecular groups of supratentorial ependymomas comprise tumors with ZFTA-RELA or YAP1-involving fusions and fusion-negative subependymoma. However, occasionally supratentorial ependymomas cannot be readily assigned to any of these groups due to lack of detection of a typical fusion and/or ambiguous DNA methylation-based classification. An unbiased approach with a cohort of unprecedented size revealed distinct methylation clusters composed of tumors with ependymal but also various other histologic features containing alternative translocations that shared ZFTA as a partner gene. Somatic overexpression of ZFTA-associated fusion genes in the developing cerebral cortex is capable of inducing tumor formation in vivo, and cross-species comparative analyses identified GLI2 as a key downstream regulator of tumorigenesis in all tumors. Targeting GLI2 with arsenic trioxide caused extended survival of tumor-bearing animals, indicating a potential therapeutic vulnerability in ZFTA fusion-positive tumors. SIGNIFICANCE: ZFTA-RELA fusions are a hallmark feature of supratentorial ependymoma. We find that ZFTA acts as a partner for alternative transcriptional activators in oncogenic fusions of supratentorial tumors with various histologic characteristics. Establishing representative mouse models, we identify potential therapeutic targets shared by ZFTA fusion-positive tumors, such as GLI2.This article is highlighted in the In This Issue feature, p. 2113.


Subject(s)
DNA-Binding Proteins/genetics , Ependymoma/genetics , Proteins/genetics , Supratentorial Neoplasms/genetics , Transcription Factors/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Ependymoma/pathology , Genomics , Humans , Mice , Supratentorial Neoplasms/pathology
13.
Cancer Discov ; 11(9): 2216-2229, 2021 09.
Article in English | MEDLINE | ID: mdl-33741711

ABSTRACT

ZFTA (C11orf95)-a gene of unknown function-partners with a variety of transcriptional coactivators in translocations that drive supratentorial ependymoma, a frequently lethal brain tumor. Understanding the function of ZFTA is key to developing therapies that inhibit these fusion proteins. Here, using a combination of transcriptomics, chromatin immunoprecipitation sequencing, and proteomics, we interrogated a series of deletion-mutant genes to identify a tripartite transformation mechanism of ZFTA-containing fusions, including: spontaneous nuclear translocation, extensive chromatin binding, and SWI/SNF, SAGA, and NuA4/Tip60 HAT chromatin modifier complex recruitment. Thereby, ZFTA tethers fusion proteins across the genome, modifying chromatin to an active state and enabling its partner transcriptional coactivators to promote promiscuous expression of a transforming transcriptome. Using mouse models, we validate further those elements of ZFTA-fusion proteins that are critical for transformation-including ZFTA zinc fingers and partner gene transactivation domains-thereby unmasking vulnerabilities for therapeutic targeting. SIGNIFICANCE: Ependymomas are hard-to-treat brain tumors driven by translocations between ZFTA and a variety of transcriptional coactivators. We dissect the transforming mechanism of these fusion proteins and identify protein domains indispensable for tumorigenesis, thereby providing insights into the molecular basis of ependymoma tumorigenesis and vulnerabilities for therapeutic targeting.This article is highlighted in the In This Issue feature, p. 2113.


Subject(s)
Cell Transformation, Neoplastic , Chromatin Assembly and Disassembly , DNA-Binding Proteins/genetics , Ependymoma/genetics , Supratentorial Neoplasms/genetics , Transcription Factors/genetics , Translocation, Genetic , Animals , Mice
14.
Cancer Discov ; 11(9): 2200-2215, 2021 09.
Article in English | MEDLINE | ID: mdl-33741710

ABSTRACT

More than 60% of supratentorial ependymomas harbor a ZFTA-RELA (ZRfus) gene fusion (formerly C11orf95-RELA). To study the biology of ZRfus, we developed an autochthonous mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain. Integrative epigenomic and transcriptomic mapping was performed on IUE-driven ZRfus tumors by CUT&RUN, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and RNA sequencing and compared with human ZRfus-driven ependymoma. In addition to direct canonical NFκB pathway activation, ZRfus dictates a neoplastic transcriptional program and binds to thousands of unique sites across the genome that are enriched with PLAGL family transcription factor (TF) motifs. ZRfus activates gene expression programs through recruitment of transcriptional coactivators (Brd4, Ep300, Cbp, Pol2) that are amenable to pharmacologic inhibition. Downstream ZRfus target genes converge on developmental programs marked by PLAGL TF proteins, and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks. SIGNIFICANCE: Ependymomas are aggressive brain tumors. Although drivers of supratentorial ependymoma (ZFTA- and YAP1-associated gene fusions) have been discovered, their functions remain unclear. Our study investigates the biology of ZFTA-RELA-driven ependymoma, specifically mechanisms of transcriptional deregulation and direct downstream gene networks that may be leveraged for potential therapeutic testing.This article is highlighted in the In This Issue feature, p. 2113.


Subject(s)
DNA-Binding Proteins/genetics , Ependymoma/genetics , Supratentorial Neoplasms/genetics , Transcription Factor RelA/genetics , Transcription Factors/genetics , Animals , Disease Models, Animal , Ependymoma/pathology , Mice , Supratentorial Neoplasms/pathology
15.
Cancer Discov ; 11(3): 542-544, 2021 03.
Article in English | MEDLINE | ID: mdl-33589423

ABSTRACT

The key differences between tumors arising in children and those in adults stem from the cellular origin of cancer at different ages, with adult cancers arising within aging cell hierarchies, as a consequence of accumulated damage and mutagenesis, in contrast to childhood tumors that are born in aberrantly developing tissues. A distinct biological property of childhood tumor cells-a block of developmental maturation-may hold the key to advancing the treatment of childhood cancer beyond cytotoxic strategies.


Subject(s)
Cell Differentiation , Cell Transformation, Neoplastic , Disease Susceptibility , Neoplasms/etiology , Neoplasms/pathology , Biomarkers, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Child , Gene Flow , Genetic Predisposition to Disease , Humans , Mutation , Neoplasms/epidemiology , Neoplasms/therapy
16.
Development ; 148(2)2021 01 20.
Article in English | MEDLINE | ID: mdl-33472850

ABSTRACT

Brain tumours are the commonest solid neoplasms in children, accounting for one quarter of all childhood cancers. Our growing knowledge of basic developmental mechanisms has significantly contributed to understanding the pathogenesis of these tumours and is beginning to impact clinical decisions on how children with these diseases are treated.


Subject(s)
Brain Neoplasms/pathology , Brain/embryology , Brain/pathology , Brain Neoplasms/genetics , Child , Humans , Models, Biological , Tumor Microenvironment
17.
J Clin Oncol ; 39(7): 822-835, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33405951

ABSTRACT

PURPOSE: SJMB03 (ClinicalTrials.gov identifier: NCT00085202) was a phase III risk-adapted trial that aimed to determine the frequency and clinical significance of biological variants and genetic alterations in medulloblastoma. PATIENTS AND METHODS: Patients 3-21 years old were stratified into average-risk and high-risk treatment groups based on metastatic status and extent of resection. Medulloblastomas were molecularly classified into subgroups (Wingless [WNT], Sonic Hedgehog [SHH], group 3, and group 4) and subtypes based on DNA methylation profiles and overlaid with gene mutations from next-generation sequencing. Coprimary study end points were (1) to assess the relationship between ERBB2 protein expression in tumors and progression-free survival (PFS), and (2) to estimate the frequency of mutations associated with WNT and SHH tumors. Clinical and molecular risk factors were evaluated, and the most robust were used to model new risk-classification categories. RESULTS: Three hundred thirty eligible patients with medulloblastoma were enrolled. Five-year PFS was 83.2% (95% CI, 78.4 to 88.2) for average-risk patients (n = 227) and 58.7% (95% CI, 49.8 to 69.1) for high-risk patients (n = 103). No association was found between ERBB2 status and PFS in the overall cohort (P = .74) or when patients were stratified by clinical risk (P = .71). Mutations in CTNNB1 (96%), DDX3X (37%), and SMARCA4 (24%) were most common in WNT tumors and PTCH1 (38%), TP53 (21%), and DDX3X (19%) in SHH tumors. Methylome profiling classified 53 WNT (17.4%), 48 SHH (15.7%), 65 group 3 (21.3%), and 139 group 4 (45.6%) tumors. A comprehensive clinicomolecular risk factor analysis identified three low-risk groups (WNT, low-risk SHH, and low-risk combined groups 3 and 4) with excellent (5-year PFS > 90%) and two very high-risk groups (high-risk SHH and high-risk combined groups 3 and 4) with poor survival (5-year PFS < 60%). CONCLUSION: These results establish a new risk stratification for future medulloblastoma trials.


Subject(s)
Biomarkers, Tumor/genetics , Cerebellar Neoplasms/therapy , DNA Methylation , Medulloblastoma/therapy , Mutation , Adolescent , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/mortality , Cerebellar Neoplasms/pathology , Child , Child, Preschool , DNA Mutational Analysis , Epigenome , Epigenomics , Female , High-Throughput Nucleotide Sequencing , Humans , Magnetic Resonance Imaging , Male , Medulloblastoma/genetics , Medulloblastoma/mortality , Medulloblastoma/secondary , Predictive Value of Tests , Progression-Free Survival , Risk Assessment , Risk Factors , Time Factors , Young Adult
18.
Cancer Cell ; 38(4): 429-432, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33049203

ABSTRACT

As we continue to learn about the unique biology of pediatric and childhood cancers and as new therapies are being developed, we asked some experts to highlight the most notable advances in our understanding of these diseases and in the development of treatments in the past decade, and to point out current challenges that still need to be addressed.


Subject(s)
Biomedical Research/methods , Medical Oncology/methods , Neoplasms/diagnosis , Neoplasms/therapy , Pathology, Molecular/methods , Biomedical Research/trends , Child , Humans , Medical Oncology/trends , Neoplasms/genetics , Pathology, Molecular/trends
19.
Genes Dev ; 34(15-16): 1051-1064, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32675324

ABSTRACT

YAP1 is a transcriptional coactivator and the principal effector of the Hippo signaling pathway, which is causally implicated in human cancer. Several YAP1 gene fusions have been identified in various human cancers and identifying the essential components of this family of gene fusions has significant therapeutic value. Here, we show that the YAP1 gene fusions YAP1-MAMLD1, YAP1-FAM118B, YAP1-TFE3, and YAP1-SS18 are oncogenic in mice. Using reporter assays, RNA-seq, ChIP-seq, and loss-of-function mutations, we can show that all of these YAP1 fusion proteins exert TEAD-dependent YAP activity, while some also exert activity of the C'-terminal fusion partner. The YAP activity of the different YAP1 fusions is resistant to negative Hippo pathway regulation due to constitutive nuclear localization and resistance to degradation of the YAP1 fusion proteins. Genetic disruption of the TEAD-binding domain of these oncogenic YAP1 fusions is sufficient to inhibit tumor formation in vivo, while pharmacological inhibition of the YAP1-TEAD interaction inhibits the growth of YAP1 fusion-expressing cell lines in vitro. These results highlight TEAD-dependent YAP activity found in these gene fusions as critical for oncogenesis and implicate these YAP functions as potential therapeutic targets in YAP1 fusion-positive tumors.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/genetics , Oncogene Proteins, Fusion/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cells, Cultured , Gene Expression Regulation , Humans , Mice , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Nuclear Localization Signals , Nucleotide Motifs , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/chemistry , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription, Genetic
20.
Dev Cell ; 54(4): 455-470.e5, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32553121

ABSTRACT

DEAD-Box Helicase 3 X-Linked (DDX3X) is frequently mutated in the Wingless (WNT) and Sonic hedghog (SHH) subtypes of medulloblastoma-the commonest malignant childhood brain tumor, but whether DDX3X functions as a medulloblastoma oncogene or tumor suppressor gene is not known. Here, we show that Ddx3x regulates hindbrain patterning and development by controlling Hox gene expression and cell stress signaling. In mice predisposed to Wnt- or Shh medulloblastoma, Ddx3x sensed oncogenic stress and suppressed tumor formation. WNT and SHH medulloblastomas normally arise only in the lower and upper rhombic lips, respectively. Deletion of Ddx3x removed this lineage restriction, enabling both medulloblastoma subtypes to arise in either germinal zone. Thus, DDX3X is a medulloblastoma tumor suppressor that regulates hindbrain development and restricts the competence of cell lineages to form medulloblastoma subtypes.


Subject(s)
Brain Neoplasms/genetics , DEAD-box RNA Helicases/genetics , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Animals , Brain Neoplasms/pathology , Cell Lineage/genetics , Gene Expression Regulation, Neoplastic/genetics , Genes, Homeobox , Humans , Medulloblastoma/pathology , Mice , Mutation/genetics , Rhombencephalon/metabolism , Rhombencephalon/pathology , Wnt Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...