Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 29(12): 2218-2233, 2020 06.
Article in English | MEDLINE | ID: mdl-32428327

ABSTRACT

Elucidating demographic history during the settlement of ecological communities is crucial for properly inferring the mechanisms that shape patterns of species diversity and their persistence through time. Here, we used genomic data and coalescent-based approaches to elucidate for the first time the demographic dynamics associated with the settlement by endemic reef fish fauna of one of the most remote peripheral islands of the Pacific Ocean, Rapa Nui (Easter Island). We compared the demographic history of nine endemic species in order to explore their demographic responses to Pleistocene climatic fluctuations. We found that species endemic to Rapa Nui share a common demographic history, as signatures of population expansions were retrieved for almost all of the species studied here, and synchronous demographic expansions initiated during the last glacial period were recovered for more than half of the studied species. These results suggest that eustatic fluctuations associated with Milankovitch cycles have played a central role in species demographic histories and in the final stage of the community assembly of many Rapa Nui reef fishes. Specifically, sea level lowstands resulted in the maximum reef habitat extension for Rapa Nui endemic species; we discuss the potential role of seamounts in allowing endemic species to cope with Pleistocene climatic fluctuations, and we highlight the importance of local historical processes over regional ones. Overall, our results shed light on the mechanisms by which endemism arises and is maintained in peripheral reef fish fauna.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Climate Change , Fishes , Animals , Coral Reefs , Fishes/classification , Fishes/genetics , Islands , Pacific Ocean , Polynesia
2.
Ecol Evol ; 9(17): 9855-9868, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31534699

ABSTRACT

Studying population structure and genetic diversity at fine spatial scales is key for a better understanding of demographic processes that influence population connectivity. This is particularly important in marine benthic organisms that rely on larval dispersal to maintain connectivity among populations. Here, we report the results of a genetic survey of the ascidian Pyura chilensis from three localities along the southeastern Pacific. This study follows up on a previous report that described a genetic break in this region among localities only 20 km apart. By implementing a hierarchical sampling design at four spatial levels and using ten polymorphic microsatellite markers, we test whether differences in fine-scale population structure explain the previously reported genetic break. We compared genetic spatial autocorrelations, as well as kinship and relatedness distributions within and among localities adjacent to the genetic break. We found no evidence of significant autocorrelation at the scale up to 50 m despite the low dispersal potential of P. chilensis that has been reported in the literature. We also found that the proportion of related individuals in close proximity (<1 km) was higher than the proportion of related individuals further apart. These results were consistent in the three localities. Our results suggest that the spatial distribution of related individuals can be nonrandom at small spatial scales and suggests that dispersal might be occasionally limited in this species or that larval cohorts can disperse in the plankton as clustered groups. Overall, this study sheds light on new aspects of the life of this ascidian as well as confirms the presence of a genetic break at 39°S latitude. Also, our data indicate there is not enough evidence to confirm that this genetic break can be explained by differences in fine-scale genetic patterns among localities.

3.
Ecol Evol ; 5(13): 2487-502, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26257865

ABSTRACT

A main goal of population geneticists is to study patterns of gene flow to gain a better understanding of the population structure in a given organism. To date most efforts have been focused on studying gene flow at either broad scales to identify barriers to gene flow and isolation by distance or at fine spatial scales in order to gain inferences regarding reproduction and local dispersal. Few studies have measured connectivity at multiple spatial scales and have utilized novel tools to test the influence of both environment and geography on shaping gene flow in an organism. Here a seascape genetics approach was used to gain insight regarding geographic and ecological barriers to gene flow of a common reef sponge, Stylissa carteri in the Red Sea. Furthermore, a small-scale (<1 km) analysis was also conducted to infer reproductive potential in this organism. At the broad scale, we found that sponge connectivity is not structured by geography alone, but rather, genetic isolation in the southern Red Sea correlates strongly with environmental heterogeneity. At the scale of a 50-m transect, spatial autocorrelation analyses and estimates of full-siblings revealed that there is no deviation from random mating. However, at slightly larger scales (100-200 m) encompassing multiple transects at a given site, a greater proportion of full-siblings was found within sites versus among sites in a given location suggesting that mating and/or dispersal are constrained to some extent at this spatial scale. This study adds to the growing body of literature suggesting that environmental and ecological variables play a major role in the genetic structure of marine invertebrate populations.

4.
Mol Ecol ; 23(6): 1348-1363, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23957633

ABSTRACT

Marine sponges are generally classified as high microbial abundance (HMA) and low microbial abundance (LMA) species. Here, 16S rRNA amplicon sequencing was applied to investigate the diversity, specificity and transcriptional activity of microbes associated with an LMA sponge (Stylissa carteri), an HMA sponge (Xestospongia testudinaria) and sea water collected from the central Saudi Arabia coast of the Red Sea. Altogether, 887 068 denoised sequences were obtained, of which 806 661 sequences remained after quality control. This resulted in 1477 operational taxonomic units (OTUs) that were assigned to 27 microbial phyla. The microbial composition of S. carteri was more similar to that of sea water than to that of X. testudinaria, which is consistent with the observation that the sequence data set of S. carteri contained many more possibly sea water sequences (~24%) than the X. testudinaria data set (~6%). The most abundant OTUs were shared between all three sources (S. carteri, X. testudinaria, sea water), while rare OTUs were unique to any given source. Despite this high degree of overlap, each sponge species contained its own specific microbiota. The X. testudinaria-specific bacterial taxa were similar to those already described for this species. A set of S. carteri-specific bacterial taxa related to Proteobacteria and Nitrospira was identified, which are likely permanently associated with S. carteri. The transcriptional activity of sponge-associated microorganisms correlated well with their abundance. Quantitative PCR revealed the presence of Poribacteria, representing typical sponge symbionts, in both sponge species and in sea water; however, low transcriptional activity in sea water suggested that Poribacteria are not active outside the host context.


Subject(s)
Bacteria/classification , Biodiversity , Microbiota , Porifera/microbiology , Animals , Bacteria/genetics , DNA, Bacterial/genetics , Indian Ocean , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Species Specificity , Transcription, Genetic
5.
Mycologia ; 105(2): 436-46, 2013.
Article in English | MEDLINE | ID: mdl-22962356

ABSTRACT

A species of Inocybe common in Washington, Oregon and British Columbia is documented and described as new. The species, I. chondroderma, is characterized by these features: pileus with a fulvous disk and ochraceous to chamois margin, presence of a cortina, densely mycelioid stipe base, smooth spores and fall phenology. The most reliable and distinctive feature of the species is a blue-green or turquoise reaction in response to application of a solution of p-dimethylaminobenzaldehyde (PDAB), indicating the presence of what is most likely an indole alkaloid. PDAB use provides a quick and diagnostic character easily implemented in a laboratory setting. ITS sequences from recent collections of I. chondroderma and from materials collected in the 1940s in Washington and Oregon fully match numerous mislabeled sequences from specimens in British Columbia and Oregon. The species is most closely related to an unclarified taxon from Colorado and Japan (I. cf. chondroderma) and a rare European species, I. subnudipes. Nine different species names in Inocybe and one in Hebeloma attributed to I. chondroderma based on GenBank BLASTN searches of the ITS locus match with 99-100% similarity, reinforcing concerns about taxonomic inaccuracies in public DNA sequence databases. A complete morphological description, illustrations and phylogenetic assessment are provided.


Subject(s)
Agaricales/classification , Benzaldehydes/metabolism , Indole Alkaloids/analysis , Agaricales/chemistry , Agaricales/genetics , Agaricales/isolation & purification , Base Sequence , British Columbia , DNA Barcoding, Taxonomic , DNA, Fungal/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Fruiting Bodies, Fungal/cytology , Molecular Sequence Data , Oregon , Phylogeny , Sequence Analysis, DNA , Spores, Fungal/cytology , Washington
6.
FEMS Microbiol Ecol ; 83(1): 232-41, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22882238

ABSTRACT

It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either 'low microbial abundance' (LMA) or 'high microbial abundance' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community.


Subject(s)
Biodiversity , Cyanobacteria/classification , Microbial Consortia , Porifera/microbiology , Proteobacteria/classification , Animals , Caribbean Region , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Indian Ocean , Microscopy, Electron, Transmission , Pacific Ocean , Phylogeny , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...