Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(7): 9655-9666, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35134290

ABSTRACT

Robust materials capable of heterogeneous reactivity are valuable for addressing toxic chemical clean up. Synthetic manipulations for generating titanium oxide nanomaterials have been utilized to alter both photochemical (1000 nm > λ > 400 nm) and chemical heterogeneous reactivity with 2-chloroethyl ethyl sulfide (2-CEES). Synthesizing TiO2 nanomaterials in the presence of long-chain alkylphosphonic acids enhanced the visible light-driven oxidation of the thioether sulfur of 2-CEES. Photooxidation reaction rates of 99 and 168 µmol/g/h (quantum yields of 5.07 × 10-4 and 8.58 × 10-4 molecules/photon, respectively) were observed for samples made with two different alkylphosphonic acids (C14H29PO3H2 and C9H19PO3H2, respectively). These observations are correlated with (i) generation of new surface defects/states (i.e., oxygen vacancies) as a result of TiO2 grafting by alkylphosphonic acid that may serve as reaction active sites, (ii) better light absorption by assemblies of nanorods and nanowires in comparison to individual nanorods, (iii) surface area differences, and (iv) the exclusion of OH groups due to the surface functionalization with alkylphosphonic acids via Ti-O-P bonds on the TiO2. Alternatively, nanowire-form H2Ti2O5·H2O was produced and found to be capable of highly efficient hydrolysis of the carbon-chlorine (C-Cl) bond of 2-CEES in the dark with a reaction rate of 279.2 µmol/g/h due to the high surface area and chemical nature of the titanate structure.

2.
Macromol Rapid Commun ; 39(12): e1800194, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29786164

ABSTRACT

The threat of chemical warfare agents (CWA) compels research into novel self-decontaminating materials (SDM) for the continued safety of first-responders, civilians, and active service personnel. The capacity to actively detoxify, as opposed to merely sequester, offending agents under typical environmental conditions defines the added value of SDMs in comparison to traditional adsorptive materials. Porous polymers, synthesized via the high internal phase emulsion (HIPE) templating, provide a facile fabrication method for materials with permeable open cellular structures that may serve in air filtration applications. PolyHIPEs comprising polydicyclopentadiene (polyDCPD) networks form stable hydroperoxide species following activation in air under ambient conditions. The hydroperoxide-containing polyDCPD materials react quickly with CWA simulants, Demeton-S and 2-chloroethyl ethyl sulfide, forming oxidation products as confirmed via gas chromatography mass spectrometry. The simplicity of the detoxification chemistry paired with the porous foam form factor presents an exciting opportunity for the development of self-decontaminating filter media.


Subject(s)
Chemical Warfare Agents/chemistry , Decontamination , Indenes/chemistry , Polymers/chemistry , Styrenes/chemistry , Chromatography, Liquid , Disulfoton/chemistry , Emulsions/chemistry , Hydrogen Peroxide/chemistry , Mass Spectrometry , Mustard Gas/analogs & derivatives , Mustard Gas/chemistry , Oxidation-Reduction , Porosity , Time Factors
3.
ACS Appl Mater Interfaces ; 8(39): 26251-26257, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27626644

ABSTRACT

Novel methods were developed to generate and characterize surface structures formed from polymer segregation within a powder coating system. A blend of unique acrylic polyol resins and low concentrations of matting agent afforded a durable coating exhibiting consistent low reflectance. An enhanced synergistic effect was observed from the phase separation and domain formation of the two polymeric resins with varying pendent hydroxyl group functionality and the incorporated matting agents. Together the domains and incorporated matting agents produced a significantly lower reflectance coating than the matting agent in combination with either polymeric resin alone. The rigorous thermal, optical, and spectroscopic analysis of the pigmented coating and control coatings culminated in the complete characterization of polymeric phases within the resulting coatings. Raman analysis of the control coatings via a distinct spectroscopic handle allowed for positive identification of the segregated polymer resins within the coating structure. Domains observed by optical microscopy within the control coating structure were chemically identified via Raman analysis as the high-hydroxyl content resin. Subsequent Raman mapping of the peak intensity over an entire cross-section provided consistent evidence for positive identification of the polymeric composition within the domain.

SELECTION OF CITATIONS
SEARCH DETAIL