Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Radiol ; 161: 110728, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36773426

ABSTRACT

PURPOSE: As osteoporosis is still underdiagnosed by clinicians and radiologists, the aim of the present study was to assess the performance of an Artificial intelligence (AI)-based Convolutional Neuronal Network (CNN)-Algorithm for the detection of low bone density on routine non-contrast chest CT in comparison to clinical reports using DEXA scans as reference. METHOD: This retrospective cross-sectional study included patients who underwent non-contrast chest CT and DEXA between April 2018 and June 2018 (n = 109, 19 men, mean age: 67.7 years). CT studies were evaluated for thoracic vertebral bone pathologies using a CNN-Algorithm, which calculates the attenuation profile of the spine. The content of the radiological reports was evaluated for the description of osteoporosis or osteopenia. DEXA was used as the reference standard. To estimate correlation the Spearman test was used and the comparison of the different groups was performed using the Wilcoxon rank sum test. Diagnostic was evaluated by performing a receiver operating characteristic curve analysis. RESULTS: The DEXA examination revealed normal bone density in 42 patients, while 49 patients had osteopenia and 7 osteoporosis. There was a statistically significant correlation between the mean CNN-based attenuation of the thoracic spine and the bone density measured on the DEXA in the hip (r = 0.51, p < 0.001) and lumbar spine (r = 0.34, p = 0.01). The mean attenuation was significantly higher in patients with normal bone density (172 ± 44.5 HU) compared to those with osteopenia or osteoporosis (125.2 ± 33.8 HU), (p < 0.0001). Diagnostic performance in distinguishing normal from abnormal bone density was higher using the CNN-based vertebral attenuation (accuracy 0.75, sensitivity: 0.93, specificity: 0.61) compared to clinical reports (accuracy 0.51, sensitivity: 0.14, specificity: 0.53). CONCLUSION: CNN-based evaluation of bone density may provide additional value over standard clinical reports for the detection of osteopenia and osteoporosis in patients undergoing routine non-contrast chest CT scans. This additional value could improve identification of fracture risk and subsequent treatment.


Subject(s)
Bone Diseases, Metabolic , Osteoporosis , Male , Humans , Aged , Bone Density/physiology , Retrospective Studies , Cross-Sectional Studies , Artificial Intelligence , Absorptiometry, Photon , Osteoporosis/diagnostic imaging , Bone Diseases, Metabolic/diagnostic imaging , Tomography, X-Ray Computed , Lumbar Vertebrae
2.
Acad Radiol ; 29(8): 1178-1188, 2022 08.
Article in English | MEDLINE | ID: mdl-35610114

ABSTRACT

RATIONALE AND OBJECTIVES: The burden of coronavirus disease 2019 (COVID-19) airspace opacities is time consuming and challenging to quantify on computed tomography. The purpose of this study was to evaluate the ability of a deep convolutional neural network (dCNN) to predict inpatient outcomes associated with COVID-19 pneumonia. MATERIALS AND METHODS: A previously trained dCNN was tested on an external validation cohort of 241 patients who presented to the emergency department and received a chest computed tomography scan, 93 with COVID-19 and 168 without. Airspace opacity scoring systems were defined by the extent of airspace opacity in each lobe, totaled across the entire lungs. Expert and dCNN scores were concurrently evaluated for interobserver agreement, while both dCNN identified airspace opacity scoring and raw opacity values were used in the prediction of COVID-19 diagnosis and inpatient outcomes. RESULTS: Interobserver agreement for airspace opacity scoring was 0.892 (95% CI 0.834-0.930). Probability of each outcome behaved as a logistic function of the opacity scoring (25% intensive care unit admission at score of 13/25, 25% intubation at 17/25, and 25% mortality at 20/25). Length of hospitalization, intensive care unit stay, and intubation were associated with larger airspace opacity score (p = 0.032, 0.039, 0.036, respectively). CONCLUSION: The tested dCNN was highly predictive of inpatient outcomes, performs at a near expert level, and provides added value for clinicians in terms of prognostication and disease severity.


Subject(s)
COVID-19 , Deep Learning , Algorithms , COVID-19/diagnostic imaging , COVID-19 Testing , Humans , Inpatients , Lung/diagnostic imaging , Morbidity , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods
3.
Top Magn Reson Imaging ; 31(1): 3-8, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35225839

ABSTRACT

ABSTRACT: We present a patient with history of systemic lupus erythematosus who presented with acute chest pain. Electrocardiography, invasive coronary angiography, and cardiac MRI were performed during the course of her evaluation. Invasive coronary angiography demonstrated obstructive disease in the diagonal system and cardiovascular MRI confirmed an anterior infarct consistent with the electrocardiographic findings. However, MRI also revealed focal inferoseptal hypoperfusion inconsistent with electrocardiographic and angiographic findings. Rather, these findings indicate the presence of concurrent microvascular coronary artery disease, which has a high prevalence among women with autoimmune disease.


Subject(s)
Coronary Artery Disease , Lupus Erythematosus, Systemic , Coronary Angiography , Coronary Artery Disease/complications , Coronary Artery Disease/diagnostic imaging , Electrocardiography , Female , Humans , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnostic imaging , Magnetic Resonance Imaging
4.
Front Cardiovasc Med ; 8: 778010, 2021.
Article in English | MEDLINE | ID: mdl-35174219

ABSTRACT

Coronary artery disease (CAD) is a major contributor to morbidity and mortality worldwide. Myocardial ischemia may occur in patients with normal or non-obstructive CAD on invasive coronary angiography (ICA). The comprehensive evaluation of coronary CT angiography (CCTA) integrated with fractional flow reserve derived from CCTA (CT-FFR) to CAD may be essential to improve the outcomes of patients with non-obstructive CAD. China CT-FFR Study-2 (ChiCTR2000031410) is a large-scale prospective, observational study in 29 medical centers in China. The primary purpose is to uncover the relationship between the CCTA findings (including CT-FFR) and the outcome of patients with non-obstructive CAD. At least 10,000 patients with non-obstructive CAD but without previous revascularization will be enrolled. A 5-year follow-up will be performed. The primary endpoint is the occurrence of major adverse cardiovascular events (MACE), including all-cause mortality, non-fatal myocardial infarct, unplanned revascularization, and hospitalization for unstable angina. Clinical characteristics, laboratory and imaging examination results will be collected to analyze their prognostic value.

SELECTION OF CITATIONS
SEARCH DETAIL