Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
EBioMedicine ; 104: 105135, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718684

ABSTRACT

Interstitial lung diseases (ILDs) in adults and children (chILD) are a heterogeneous group of lung disorders leading to inflammation, abnormal tissue repair and scarring of the lung parenchyma often resulting in respiratory failure and death. Inherited factors directly cause, or contribute significantly to the risk of developing ILD, so called familial pulmonary fibrosis (FPF), and monogenic forms may have a poor prognosis and respond poorly to current treatments. Specific, variant-targeted or precision treatments are lacking. Clinical trials of repurposed drugs, anti-fibrotic medications and specific treatments are emerging but for many patients no interventions exist. We convened an expert working group to develop an overarching framework to address the existing research gaps in basic, translational, and clinical research and identified areas for future development of preclinical models, candidate medications and innovative clinical trials. In this Position Paper, we summarise working group discussions, recommendations, and unresolved questions concerning precision treatments for FPF.


Subject(s)
Precision Medicine , Humans , Precision Medicine/methods , Animals , Disease Management , Pulmonary Fibrosis/therapy , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/etiology , Clinical Trials as Topic
2.
Eur J Immunol ; 52(11): 1768-1775, 2022 11.
Article in English | MEDLINE | ID: mdl-36106692

ABSTRACT

SARS-CoV-2 is a newly emerged coronavirus, causing the global pandemic of respiratory coronavirus disease (COVID-19). The type I interferon (IFN) pathway is of particular importance for anti-viral defense and recent studies identified that type I IFNs drive early inflammatory responses to SARS-CoV-2. Here, we use a mouse model of SARS-CoV-2 infection, facilitating viral entry by intranasal recombinant Adeno-Associated Virus (rAAV) transduction of hACE2 in wildtype (WT) and type I IFN receptor-1 deficient (Ifnar1-/- ) mice, to study the role of type I IFN signalling and innate immune responses during SARS-CoV-2 infection. Our data show that type I IFN signalling is essential for inducing anti-viral effector responses to SARS-CoV-2, control of virus replication, and to prevent enhanced disease. Furthermore, hACE2-Ifnar1-/- mice had increased gene expression of the chemokine Cxcl1 and airway infiltration of neutrophils as well as reduced and delayed production of monocyte-recruiting chemokine CCL2. hACE2-Ifnar1-/- mice showed altered recruitment of inflammatory myeloid cells to the lung upon SARS-CoV-2 infection, with a shift from Ly6C+ to Ly6C- expressing cells. Together, our findings suggest that type I IFN signalling deficiency results in a dysregulated innate immune response to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Immunity, Innate , Receptor, Interferon alpha-beta , Animals , Mice , COVID-19/immunology , Interferon Type I , Pandemics , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2
3.
Hum Gene Ther ; 33(17-18): 893-912, 2022 09.
Article in English | MEDLINE | ID: mdl-36074947

ABSTRACT

The prospect of gene therapy for inherited and acquired respiratory disease has energized the research community since the 1980s, with cystic fibrosis, as a monogenic disorder, driving early efforts to develop effective strategies. The fact that there are still no approved gene therapy products for the lung, despite many early phase clinical trials, illustrates the scale of the challenge: In the 1990s, first-generation non-viral and viral vector systems demonstrated proof-of-concept but low efficacy. Since then, there has been steady progress toward improved vectors with the capacity to overcome at least some of the formidable barriers presented by the lung. In addition, the inclusion of features such as codon optimization and promoters providing long-term expression have improved the expression characteristics of therapeutic transgenes. Early approaches were based on gene addition, where a new DNA copy of a gene is introduced to complement a genetic mutation: however, the advent of RNA-based products that can directly express a therapeutic protein or manipulate gene expression, together with the expanding range of tools for gene editing, has stimulated the development of alternative approaches. This review discusses the range of vector systems being evaluated for lung delivery; the variety of cargoes they deliver, including DNA, antisense oligonucleotides, messenger RNA (mRNA), small interfering RNA (siRNA), and peptide nucleic acids; and exemplifies progress in selected respiratory disease indications.


Subject(s)
Peptide Nucleic Acids , DNA , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/genetics , Oligonucleotides, Antisense , RNA, Messenger , RNA, Small Interfering/genetics
4.
Mol Ther Methods Clin Dev ; 26: 239-252, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35892086

ABSTRACT

A lentiviral vector (LV) pseudotype derived from the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins of a murine respirovirus (Sendai virus) facilitates efficient targeting of murine lung in vivo. Since targeting of the human lung will depend upon the availability and distribution of receptors used by F/HN, we investigated transduction of primary human airway cells differentiated at the air-liquid interface (ALI). We observed targeting of human basal, ciliated, goblet, and club cells, and using a combination of sialidase enzymes and lectins, we showed that transduction is dependent on the availability of sialylated glycans, including α2,3 sialylated N-acetyllactosamine (LacNAc). Transduction via F/HN was 300-fold more efficient than another hemagglutinin-based LV pseudotype derived from influenza fowl plague virus (HA Rostock), despite similar efficiency reported in murine airways in vivo. Using specific glycans to inhibit hemagglutination, we showed this could be due to a greater affinity of F/HN for α2,3 sialylated LacNAc. Overall, these results highlight the importance of identifying the receptors used in animal and cell-culture models to predict performance in the human airways. Given the reported prevalence of α2,3 sialylated LacNAc on human pulmonary cells, these results support the suitability of the F/HN pseudotype for human lung gene therapy applications.

5.
Front Immunol ; 13: 819058, 2022.
Article in English | MEDLINE | ID: mdl-35529866

ABSTRACT

Vaccines for COVID-19 are now a crucial public health need, but the degree of protection provided by conventional vaccinations for individuals with compromised immune systems is unclear. The use of viral vectors to express neutralizing monoclonal antibodies (mAbs) in the lung is an alternative approach that does not wholly depend on individuals having intact immune systems and responses. Here, we identified an anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibody, NC0321, which can efficiently neutralize a range of SARS-CoV-2 variants, including alpha, beta, delta, and eta. Both prophylactic and therapeutic NC0321 treatments effectively protected mice from SARS-CoV-2 infection. Notably, we adopted viral vector-mediated delivery of NC0321 IgG1 as an attractive approach to prevent SARS-CoV-2 infection. The NC0321 IgG1 expression in the proximal airway, expressed by a single direct in-vivo intranasal (I.N.) administration of a self-inactivating and recombinant lentiviral vector (rSIV.F/HN-NC0321), can protect young, elderly, and immunocompromised mice against mouse-adapted SARS-CoV-2 surrogate challenge. Long-term monitoring indicated that rSIV.F/HN-NC0321 mediated robust IgG expression throughout the airway of young and SCID mice, importantly, no statistical difference in the NC0321 expression between young and SCID mice was observed. A single I.N. dose of rSIV.F/HN-NC0321 30 or 180 days prior to SARS-CoV-2 challenge significantly reduced lung SARS-CoV-2 titers in an Ad5-hACE2-transduced mouse model, reconfirming that this vectored immunoprophylaxis strategy could be useful, especially for those individuals who cannot gain effective immunity from existing vaccines, and could potentially prevent clinical sequelae.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Mice , Mice, SCID , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
6.
Mol Ther Methods Clin Dev ; 25: 382-391, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35573048

ABSTRACT

We developed a novel lentiviral vector, pseudotyped with the F and HN proteins from Sendai virus (rSIV.F/HN), that produces long-lasting, high-efficiency transduction of the respiratory epithelium. Here we addressed whether this platform technology can secrete sufficient levels of a therapeutic protein into the lungs to ameliorate a fatal pulmonary disease as an example of its translational capability. Pulmonary alveolar proteinosis (PAP) results from alveolar granulocyte-macrophage colony-stimulating factor (GM-CSF) insufficiency, resulting in abnormal surfactant homeostasis and consequent ventilatory problems. Lungs of GM-CSF knockout mice were transduced with a single dose of rSIV.F/HN-expressing murine GM-CSF (mGM-CSF; 1e5-92e7 transduction units [TU]/mouse); mGM-CSF expression was dose related and persisted for at least 11 months. PAP disease biomarkers were rapidly and persistently corrected, but we noted a narrow toxicity/efficacy window. rSIV.F/HN may be a useful platform technology to deliver therapeutic proteins for lung diseases requiring long-lasting and stable expression of secreted proteins.

7.
Thorax ; 77(12): 1229-1236, 2022 12.
Article in English | MEDLINE | ID: mdl-35165144

ABSTRACT

BACKGROUND: The COVID-19 pandemic continues to be a worldwide threat and effective antiviral drugs and vaccines are being developed in a joint global effort. However, some elderly and immune-compromised populations are unable to raise an effective immune response against traditional vaccines. AIMS: We hypothesised that passive immunity engineered by the in vivo expression of anti-SARS-CoV-2 monoclonal antibodies (mAbs), an approach termed vectored-immunoprophylaxis (VIP), could offer sustained protection against COVID-19 in all populations irrespective of their immune status or age. METHODS: We developed three key reagents to evaluate VIP for SARS-CoV-2: (i) we engineered standard laboratory mice to express human ACE2 via rAAV9 in vivo gene transfer, to allow in vivo assessment of SARS-CoV-2 infection, (ii) to simplify in vivo challenge studies, we generated SARS-CoV-2 Spike protein pseudotyped lentiviral vectors as a simple mimic of authentic SARS-CoV-2 that could be used under standard laboratory containment conditions and (iii) we developed in vivo gene transfer vectors to express anti-SARS-CoV-2 mAbs. CONCLUSIONS: A single intranasal dose of rAAV9 or rSIV.F/HN vectors expressing anti-SARS-CoV-2 mAbs significantly reduced SARS-CoV-2 mimic infection in the lower respiratory tract of hACE2-expressing mice. If translated, the VIP approach could potentially offer a highly effective, long-term protection against COVID-19 for highly vulnerable populations; especially immune-deficient/senescent individuals, who fail to respond to conventional SARS-CoV-2 vaccines. The in vivo expression of multiple anti-SARS-CoV-2 mAbs could enhance protection and prevent rapid mutational escape.


Subject(s)
COVID-19 , Humans , Mice , Animals , Aged , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , Pandemics/prevention & control , Antibodies, Viral , Lung , Antibodies, Neutralizing
8.
Mol Ther Methods Clin Dev ; 24: 62-70, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34977273

ABSTRACT

Understanding pulmonary diseases requires robust culture models that are reproducible, sustainable in long-term culture, physiologically relevant, and suitable for assessment of therapeutic interventions. Primary human lung cells are physiologically relevant but cannot be cultured in vitro long term and, although engineered organoids are an attractive choice, they do not phenotypically recapitulate the lung parenchyma; overall, these models do not allow for the generation of reliable disease models. Recently, we described a new cell culture platform based on H441 cells that are grown at the air-liquid interface to produce the SALI culture model, for studying and correcting the rare interstitial lung disease surfactant protein B (SPB) deficiency. Here, we report the characterization of the effects of SALI culture conditions on the transcriptional profile of the constituent H441 cells. We further analyze the transcriptomics of the model in the context of surfactant metabolism and the disease phenotype through SFTPB knockout SALI cultures. By comparing the gene expression profile of SALI cultures with that of human lung parenchyma obtained via single-cell RNA sequencing, we found that SALI cultures are remarkably similar to human alveolar type II cells, implying clinical relevance of the SALI culture platform as a non-diseased human lung alveolar cell model.

9.
Nat Genet ; 53(11): 1606-1615, 2021 11.
Article in English | MEDLINE | ID: mdl-34737427

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) disease (COVID-19) pandemic has caused millions of deaths worldwide. Genome-wide association studies identified the 3p21.31 region as conferring a twofold increased risk of respiratory failure. Here, using a combined multiomics and machine learning approach, we identify the gain-of-function risk A allele of an SNP, rs17713054G>A, as a probable causative variant. We show with chromosome conformation capture and gene-expression analysis that the rs17713054-affected enhancer upregulates the interacting gene, leucine zipper transcription factor like 1 (LZTFL1). Selective spatial transcriptomic analysis of lung biopsies from patients with COVID-19 shows the presence of signals associated with epithelial-mesenchymal transition (EMT), a viral response pathway that is regulated by LZTFL1. We conclude that pulmonary epithelial cells undergoing EMT, rather than immune cells, are likely responsible for the 3p21.31-associated risk. Since the 3p21.31 effect is conferred by a gain-of-function, LZTFL1 may represent a therapeutic target.


Subject(s)
COVID-19/complications , Chromosomes, Human, Pair 3/genetics , Epithelial-Mesenchymal Transition , Lung/virology , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Transcription Factors/genetics , COVID-19/transmission , COVID-19/virology , Case-Control Studies , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Genome-Wide Association Study , Humans , Lung/metabolism , Lung/pathology , Male , Transcription Factors/metabolism
10.
Sci Rep ; 11(1): 21484, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728747

ABSTRACT

Epidemiological efforts to model the spread of SARS-CoV-2, the virus that causes COVID-19, are crucial to understanding and containing current and future outbreaks and to inform public health responses. Mutations that occur in viral genomes can alter virulence during outbreaks by increasing infection rates and helping the virus evade the host immune system. To understand the changes in viral genomic diversity and molecular epidemiology in Oxford during the first wave of infections in the United Kingdom, we analyzed 563 clinical SARS-CoV-2 samples via whole-genome sequencing using Nanopore MinION sequencing. Large-scale surveillance efforts during viral epidemics are likely to be confounded by the number of independent introductions of the viral strains into a region. To avoid such issues and better understand the selection-based changes occurring in the SARS-CoV-2 genome, we utilized local isolates collected during the UK's first national lockdown whereby personal interactions, international and national travel were considerably restricted and controlled. We were able to track the short-term evolution of the virus, detect the emergence of several mutations of concern or interest, and capture the viral diversity of the region. Overall, these results demonstrate genomic pathogen surveillance efforts have considerable utility in controlling the local spread of the virus.


Subject(s)
COVID-19/epidemiology , Genetic Variation , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/virology , Genome, Viral , Humans , Phylogeny , Polymorphism, Single Nucleotide , Quarantine , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Seasons , Spike Glycoprotein, Coronavirus/genetics , United Kingdom/epidemiology , Whole Genome Sequencing
11.
Sci Rep ; 11(1): 15694, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34344952

ABSTRACT

Respiratory syncytial virus (RSV) infection is a common cause of hospitalisation in infants and the elderly. Palivizumab prophylaxis is the only approved treatment modality but is costly and only offered to select vulnerable populations. Here, we investigated gene delivery approaches via recombinant adeno-associated virus (rAAV2/8) and simian immunodeficiency virus (rSIV.F/HN) vectors to achieve sustained in vivo production of palivizumab in a murine model. Delivery of palivizumab-expressing vectors 28 days prior to RSV challenge resulted in complete protection from RSV-induced weight loss. This approach offers prophylaxis against RSV infection, allowing for wider use and reduction in treatment costs in vulnerable populations.


Subject(s)
Antibodies, Monoclonal, Humanized/genetics , Gene Expression , Genetic Therapy , Palivizumab/genetics , Respiratory Syncytial Virus Infections/therapy , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses , Animals , Dependovirus/genetics , Disease Models, Animal , Female , Gene Transfer Techniques , Genetic Engineering , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Injections, Intramuscular , Lentivirus/genetics , Mice , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/immunology , Transduction, Genetic , Treatment Outcome
12.
Mol Ther Methods Clin Dev ; 20: 237-246, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33426150

ABSTRACT

Surfactant protein B (SPB) deficiency is a severe monogenic interstitial lung disorder that leads to loss of life in infants as a result of alveolar collapse and respiratory distress syndrome. The development and assessment of curative therapies for the deficiency are limited by the general lack of well-characterized and physiologically relevant in vitro models of human lung parenchyma. Here, we describe a new human surfactant air-liquid interface (SALI) culture model based on H441 cells, which successfully recapitulates the key characteristics of human alveolar cells in primary culture as evidenced by RNA and protein expression of alveolar cell markers. SALI cultures were able to develop stratified cellular layers with functional barrier properties that are stable for at least 28 days after air-lift. A SFTPB knockout model of SPB deficiency was generated via gene editing of SALI cultures. The SFTPB-edited SALI cultures lost expression of SPB completely and showed weaker functional barrier properties. We were able to correct this phenotype via delivery of a lentiviral vector pseudotyped with Sendai virus glycoproteins F/HN expressing SPB. We believe that SALI cultures can serve as an important in vitro research tool to study human alveolar epithelium, especially for the development of advanced therapy medicinal products targeting monogenic disorders.

13.
Nucleic Acids Res ; 49(3): e16, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33290561

ABSTRACT

The gene and cell therapy fields are advancing rapidly, with a potential to treat and cure a wide range of diseases, and lentivirus-based gene transfer agents are the vector of choice for many investigators. Early cases of insertional mutagenesis caused by gammaretroviral vectors highlighted that integration site (IS) analysis was a major safety and quality control checkpoint for lentiviral applications. The methods established to detect lentiviral integrations using next-generation sequencing (NGS) are limited by short read length, inadvertent PCR bias, low yield, or lengthy protocols. Here, we describe a new method to sequence IS using Amplification-free Integration Site sequencing (AFIS-Seq). AFIS-Seq is based on amplification-free, Cas9-mediated enrichment of high-molecular-weight chromosomal DNA suitable for long-range Nanopore MinION sequencing. This accessible and low-cost approach generates long reads enabling IS mapping with high certainty within a single day. We demonstrate proof-of-concept by mapping IS of lentiviral vectors in a variety of cell models and report up to 1600-fold enrichment of the signal. This method can be further extended to sequencing of Cas9-mediated integration of genes and to in vivo analysis of IS. AFIS-Seq uses long-read sequencing to facilitate safety evaluation of preclinical lentiviral vector gene therapies by providing IS analysis with improved confidence.


Subject(s)
CRISPR-Associated Protein 9 , Nanopore Sequencing/methods , Sequence Analysis, DNA/methods , Virus Integration , Animals , Cell Line , DNA, Viral/analysis , Genetic Vectors , Humans , Lentivirus/genetics , Mice , Proviruses/genetics
14.
Stem Cell Res Ther ; 11(1): 448, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097094

ABSTRACT

Gene therapy is being investigated for a range of serious lung diseases, such as cystic fibrosis and emphysema. Recombinant adeno-associated virus (rAAV) is a well-established, safe, viral vector for gene delivery with multiple naturally occurring and artificial serotypes available displaying alternate cell, tissue, and species-specific tropisms. Efficient AAV serotypes for the transduction of the conducting airways have been identified for several species; however, efficient serotypes for human lung parenchyma have not yet been identified. Here, we screened the ability of multiple AAV serotypes to transduce lung bud organoids (LBOs)-a model of human lung parenchyma generated from human embryonic stem cells. Microinjection of LBOs allowed us to model transduction from the luminal surface, similar to dosing via vector inhalation. We identified the naturally occurring rAAV2 and rAAV6 serotypes, along with synthetic rAAV6 variants, as having tropism for the human lung parenchyma. Positive staining of LBOs for surfactant proteins B and C confirmed distal lung identity and suggested the suitability of these vectors for the transduction of alveolar type II cells. Our findings establish LBOs as a new model for pulmonary gene therapy and stress the relevance of LBOs as a viral infection model of the lung parenchyma as relevant in SARS-CoV-2 research.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Human Embryonic Stem Cells/cytology , Lung Diseases/therapy , Organoids/cytology , Cell Line , Dependovirus/immunology , Gene Transfer Techniques , Genetic Vectors/genetics , Humans , Lung/metabolism , Models, Biological , Parenchymal Tissue/cytology
15.
Thorax ; 75(12): 1112-1115, 2020 12.
Article in English | MEDLINE | ID: mdl-32883885

ABSTRACT

When recombinant simian immunodeficiency virus (SIV) is pseudotyped with the F and HN glycoproteins from murine respiratory Sendai virus (rSIV.F/HN), it provides efficient lung cell targeting and lifelong transgene expression in the murine airways. We have shown that a single dose of rSIV.F/HN can direct stable expression of neutralising antibody against influenza in the murine airways and systemic circulation, and protects mice against two different influenza strains in lethal challenge experiments. These data suggest that rSIV.F/HN could be used as a vector for passive immunisation against influenza and other respiratory pathogens.


Subject(s)
Antibodies, Neutralizing/genetics , Genetic Vectors/immunology , Influenza A Virus, H1N1 Subtype/immunology , Lung/immunology , Orthomyxoviridae Infections/prevention & control , Simian Immunodeficiency Virus/genetics , Animals , Antibodies, Neutralizing/immunology , Gene Expression , Genetic Vectors/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus , Immunization, Passive , Immunoglobulin G , Mice , Sendai virus/genetics , Transgenes , Weight Loss
17.
Expert Rev Respir Med ; 13(8): 709-725, 2019 08.
Article in English | MEDLINE | ID: mdl-31215818

ABSTRACT

Introduction: Cystic fibrosis (CF) remains a life-threatening genetic disease, with few clinically effective treatment options. Gene therapy and gene editing strategies offer the potential for a one-time CF cure, irrespective of the CFTR mutation class. Areas covered: We review emerging gene therapies and gene delivery strategies for the treatment of CF particularly viral and non-viral approaches with potential to treat CF. Expert opinion: It was initially anticipated that the challenge of developing a gene therapy for CF lung disease would be met relatively easily. Following early proof-of-concept clinical studies, CF gene therapy has entered a new era with innovative vector designs, approaches to subvert the humoral immune system and increase gene delivery and gene correction efficiencies. Developments include integrating adenoviral vectors, rapamycin-loaded nanoparticles, and lung-tropic lentiviral vectors. The characterization of novel cell types in the lung epithelium, including pulmonary ionocytes, may also encourage cell type-specific targeting for CF correction. We anticipate preclinical studies to further validate these strategies, which should pave the way for clinical trials. We also expect gene editing efficiencies to improve to clinically translatable levels, given advancements in viral and non-viral vectors. Overall, gene delivery technologies look more convincing in producing an effective CF gene therapy.


Subject(s)
Cystic Fibrosis/therapy , Genetic Therapy , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Gene Editing , Genetic Vectors , Humans , Mutation
18.
Expert Opin Biol Ther ; 18(9): 959-972, 2018 09.
Article in English | MEDLINE | ID: mdl-30067117

ABSTRACT

INTRODUCTION: Ex-vivo gene therapy has had significant clinical impact over the last couple of years and in-vivo gene therapy products are being approved for clinical use. Gene therapy and gene editing approaches have huge potential to treat genetic disease and chronic illness. AREAS COVERED: This article provides a review of in-vivo approaches for gene therapy in the lung and liver, exploiting non-viral and viral vectors with varying serotypes and pseudotypes to target-specific cells. Antibody responses inhibiting viral vectors continue to constrain effective repeat administration. Lessons learned from ex-vivo gene therapy and genome editing are also discussed. EXPERT OPINION: The fields of lung and liver in-vivo gene therapy are thriving and a comparison highlights obstacles and opportunities for both. Overcoming immunological issues associated with repeated administration of viral vectors remains a key challenge. The addition of targeted small molecules in combination with viral vectors may offer one solution. A substantial bottleneck to the widespread adoption of in-vivo gene therapy is how to ensure sufficient capacity for clinical-grade vector production. In the future, the exploitation of gene editing approaches for in-vivo disease treatment may facilitate the resurgence of non-viral gene transfer approaches, which tend to be eclipsed by more efficient viral vectors.


Subject(s)
Gene Transfer Techniques , Genetic Therapy/methods , Genetic Therapy/trends , Liver/metabolism , Lung/metabolism , Animals , Dependovirus/genetics , Gene Editing , Gene Transfer Techniques/trends , Genetic Vectors/therapeutic use , Humans , Liver/pathology , Liver/virology , Lung/pathology , Lung/virology , Viruses/genetics
19.
Gene Ther ; 25(5): 345-358, 2018 08.
Article in English | MEDLINE | ID: mdl-30022127

ABSTRACT

We have shown that a lentiviral vector (rSIV.F/HN) pseudotyped with the F and HN proteins from Sendai virus generates high levels of intracellular proteins after lung transduction. Here, we evaluate the use of rSIV.F/HN for production of secreted proteins. We assessed whether rSIV.F/HN transduction of the lung generates therapeutically relevant levels of secreted proteins in the lung and systemic circulation using human α1-anti-trypsin (hAAT) and factor VIII (hFVIII) as exemplars. Sedated mice were transduced with rSIV.F/HN carrying either the secreted reporter gene Gaussia luciferase or the hAAT or hFVIII cDNAs by nasal sniffing. rSIV.F/HN-hAAT transduction lead to therapeutically relevant hAAT levels (70 µg/ml) in epithelial lining fluid, with stable expression persisting for at least 19 months from a single application. Secreted proteins produced in the lung were released into the circulation and stable expression was detectable in blood. The levels of hFVIII in murine blood approached therapeutically relevant targets. rSIV.F/HN was also able to produce secreted hAAT and hFVIII in transduced human primary airway cells. rSIV.F/HN transduction of the murine lungs leads to long-lasting and therapeutically relevant levels of secreted proteins in the lung and systemic circulation. These data broaden the use of this vector platform for a large range of disease indications.


Subject(s)
HN Protein/metabolism , Transfection/methods , Viral Fusion Proteins/metabolism , Animals , DNA, Complementary/metabolism , Factor VIII , Gene Transfer Techniques , Genes, Reporter , Genetic Therapy , Genetic Vectors , Humans , Lentivirus Infections , Lung/immunology , Lung/metabolism , Lung/physiology , Mice , Protein Translocation Systems/genetics , Sendai virus/metabolism , Transduction, Genetic/methods
20.
Sci Rep ; 8(1): 6774, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29691424

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...