Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Gastroenterology ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735402

ABSTRACT

BACKGROUND: Putative anion transporter-1 (PAT1, SLC26A6) plays a key role in intestinal oxalate and bicarbonate secretion. PAT1 knockout (PKO) mice exhibit hyperoxaluria and nephrolithiasis. Notably, diseases such as inflammatory bowel diseases (IBD) are also associated with higher risk of hyperoxaluria and nephrolithiasis. However, the potential role of PAT1 deficiency in gut barrier integrity and susceptibility to colitis is currently elusive. METHODS: Age-matched PKO and wild-type (WT) littermates were administered 3.5%-DSS in drinking water for 6 days. Ileum and colon of control and treated mice were harvested. mRNA and protein expression of tight junction (TJ) proteins were determined by RT-PCR and western blotting. Severity of inflammation was assessed by measuring diarrheal phenotype, cytokine expression and H&E staining. Gut microbiome and associated metabolome were analyzed by 16S rRNA sequencing and mass spectrometry, respectively. RESULTS: PKO mice exhibited significantly higher loss of body weight, gut permeability, colonic inflammation, and diarrhea in response to DSS treatment. Additionally, PKO mice showed microbial dysbiosis and significantly reduced levels of butyrate and butyrate-producing microbes compared to controls. Cohousing WT and PKO mice for 4 weeks resulted in PKO-like signatures on the expression of TJ proteins in the colon of WT mice. CONCLUSION: Our data demonstrate that loss of PAT1 disrupts gut microbiome and related metabolites, decreases gut barrier integrity, and increases host susceptibility to intestinal inflammation. These findings, thus, highlight a novel role of the oxalate transporter PAT1 in promoting gut barrier integrity and its deficiency appears to contribute to the pathogenesis of IBD.

2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674044

ABSTRACT

Serotonin transporter (SERT) deficiency has been implicated in metabolic syndrome, intestinal inflammation, and microbial dysbiosis. Interestingly, changes in microbiome metabolic capacity and several alterations in host gene expression, including lipid metabolism, were previously observed in SERT-/- mice ileal mucosa. However, the precise host or microbial metabolites altered by SERT deficiency that may contribute to the pleiotropic phenotype of SERT KO mice are not yet understood. This study investigated the hypothesis that SERT deficiency impacts lipid and microbial metabolite abundances in the ileal mucosa, where SERT is highly expressed. Ileal mucosal metabolomics was performed by Metabolon on wild-type (WT) and homozygous SERT knockout (KO) mice. Fluorescent-activated cell sorting (FACS) was utilized to measure immune cell populations in ileal lamina propria to assess immunomodulatory effects caused by SERT deficiency. SERT KO mice exhibited a unique ileal mucosal metabolomic signature, with the most differentially altered metabolites being lipids. Such changes included increased diacylglycerols and decreased monoacylglycerols in the ileal mucosa of SERT KO mice compared to WT mice. Further, the ileal mucosa of SERT KO mice exhibited several changes in microbial-related metabolites known to play roles in intestinal inflammation and insulin resistance. SERT KO mice also had a significant reduction in the abundance of ileal group 3 innate lymphoid cells (ILC3). In conclusion, SERT deficiency induces complex alterations in the ileal mucosal environment, indicating potential links between serotonergic signaling, gut microbiota, mucosal immunity, intestinal inflammation, and metabolic syndrome.


Subject(s)
Gastrointestinal Microbiome , Ileum , Intestinal Mucosa , Mice, Knockout , Serotonin Plasma Membrane Transport Proteins , Animals , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/deficiency , Ileum/metabolism , Ileum/pathology , Intestinal Mucosa/metabolism , Mice , Lipid Metabolism , Metabolomics/methods , Male , Metabolome , Mice, Inbred C57BL
3.
Nutrients ; 15(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068838

ABSTRACT

Diet-microbiota interactions are emerging as important contributors in the pathogenesis of inflammatory bowel diseases (IBD), characterized by chronic inflammation of the GI tract. The aryl hydrocarbon receptor (AhR) transcription factor regulates xenobiotic metabolism and is activated by exogenous ligands, including indole-3-carbinole (I3C), which is found in cruciferous vegetables. However, studies investigating the impact of dietary I3C and AhR in preclinical models resembling human IBD are lacking. Mice (WT or AhR KO in IECs, 6-8 weeks) or SAMP/YitFC and AKR/J control (4 weeks, m/f) were fed an AhR ligand-depleted or I3C (200 ppm)-supplemented diet. There were increased levels of LPS and exacerbated inflammation, resulting in increased mortality in AhRΔIEC mice fed the AhR ligand-depleted diet in response to chronic DSS. The mechanisms underlying the protective effects of I3C supplementation during colonic colitis involved amelioration of intestinal inflammation and restoration of the altered gut microbiota, particularly the families of clostridicae and lachnospriaceae. Furthermore, the AhR-depleted diet led to the emergence of pathobiont Parvibacter caecicola in WT mice. SAMP/YitFc mice with spontaneous ileitis showed significant recovery in epithelial abnormalities when fed dietary I3C. These data demonstrate the critical role of AhR and the mechanisms of dietary I3C in maintaining epithelial homeostasis and ameliorating inflammation.


Subject(s)
Diet , Inflammatory Bowel Diseases , Humans , Animals , Mice , Ligands , Inflammation/drug therapy , Inflammatory Bowel Diseases/drug therapy , Indoles/pharmacology , Indoles/therapeutic use , Receptors, Aryl Hydrocarbon/metabolism , Mice, Inbred C57BL
4.
Dig Liver Dis ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37923598

ABSTRACT

BACKGROUND: Alcohol-Associated Liver Disease (ALD) is a leading cause of liver mortality. Mechanisms responsible for severe ALD and the roles of gut microbiota are not fully understood. Multi-omics tools have enabled a better understanding of metabolic alterations and can aid in identifying metabolites as biomarkers for severe ALD. AIMS: Examine differences between cirrhotic and non-cirrhotic ALD, investigate microbial contributions to such changes, and identify potential diagnostic and prognostic metabolites for severe ALD. METHODS: Untargeted metabolomics were performed on the serum of 11 non-cirrhotic and 11 cirrhotic ALD patients. Data were analyzed using MetOrigin and Metaboanalyst to identify enriched pathways. RESULTS: Increased methylated nucleotides, gamma-glutamyl amino acids, bile acids, and specific metabolites kynurenine and campesterol were increased in ALD cirrhosis, whereas branched-chain amino acids, serotonin, and xanthurenate were decreased. Microbial contributions included increases in the short-chain fatty acid indolebutyrate and methionine sulfoxide in ALD cirrhosis. The analysis also identified the potential for serum levels of 3-ureidopropionate, cis-3,3-methyleneheptanoylglycine, retinol, and valine to be used as biomarkers for clinical assessment of alcohol-associated cirrhosis. CONCLUSION: We have identified a set of metabolites that are differentially altered in cirrhotic compared to non-cirrhotic ALD that can potentially be used as biomarkers for the severity of the disease.

5.
Metabolites ; 13(7)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37512580

ABSTRACT

Inflammatory bowel diseases (IBD) involve complex interactions among genetic factors, aberrant immune activation, and gut microbial dysbiosis. While metabolomic studies have focused on feces and serum, fewer investigations have examined the intestinal mucosa despite its crucial role in metabolite absorption and transport. The goals of this study were twofold: to test the hypothesis that gut microbial dysbiosis from chronic intestinal inflammation leads to mucosal metabolic alterations suitable for therapeutic targeting, and to address gaps in metabolomic studies of intestinal inflammation that have overlooked the mucosal metabolome. The chronic DSS colitis was induced for five weeks in 7-9-week-old wild-type C57BL/6J male mice followed by microbial profiling with targeted 16srRNA sequencing service. Mucosal metabolite measurements were performed by Metabolon (Morrisville, NC). The data were analyzed using the bioinformatic tools Pathview, MetOrigin, and Metaboanalyst. The novel findings demonstrated increases in several host- and microbe-derived purine, pyrimidine, endocannabinoid, and ceramide metabolites in colitis. Origin analysis revealed that microbial-related tryptophan metabolites kynurenine, anthranilate, 5-hydroxyindoleacetate, and C-glycosyltryptophan were significantly increased in colon mucosa during chronic inflammation and strongly correlated with disease activity. These findings offer new insights into the pathophysiology of IBD and provide novel potential targets for microbial-based therapeutics.

6.
Front Immunol ; 13: 1021924, 2022.
Article in English | MEDLINE | ID: mdl-36569849

ABSTRACT

Bile acids are critical for the digestion and absorption of lipids and fat-soluble vitamins; however, evidence continues to emerge supporting additional roles for bile acids as signaling molecules. After they are synthesized from cholesterol in the liver, primary bile acids are modified into secondary bile acids by gut flora contributing to a diverse pool and making the composition of bile acids highly sensitive to alterations in gut microbiota. Disturbances in bile acid homeostasis have been observed in patients with Inflammatory Bowel Diseases (IBD). In fact, a decrease in secondary bile acids was shown to occur because of IBD-associated dysbiosis. Further, the increase in luminal bile acids due to malabsorption in Crohn's ileitis and ileal resection has been implicated in the induction of diarrhea and the exacerbation of inflammation. A causal link between bile acid signaling and intestinal inflammation has been recently suggested. With respect to potential mechanisms related to bile acids and IBD, several studies have provided strong evidence for direct effects of bile acids on intestinal permeability in porcine and rodent models as well as in humans. Interestingly, different bile acids were shown to exert distinct effects on the inflammatory response and intestinal permeability that require careful consideration. Such findings revealed a potential effect for changes in the relative abundance of different bile acids on the induction of inflammation by bile acids and the development of IBD. This review summarizes current knowledge about the roles for bile acids as inflammatory mediators and modulators of intestinal permeability mainly in the context of inflammatory bowel diseases.


Subject(s)
Bile Acids and Salts , Inflammatory Bowel Diseases , Humans , Animals , Swine , Inflammation Mediators , Inflammation , Permeability
7.
Am J Physiol Cell Physiol ; 323(6): C1720-C1727, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36189974

ABSTRACT

Na+/H+ exchanger-3 (NHE-3) is the major apical membrane transporter involved in vectorial Na+ absorption in the intestine. Dysregulation of NHE-3 expression and/or function has been implicated in pathophysiology of diarrhea associated with gut inflammation and infections. Therefore, it is critical to understand the mechanisms involved in the regulation of NHE-3 expression. MicroRNAs (miRNAs) are highly conserved small RNAs that can regulate gene expression at the posttranscriptional level. To date, however, very little is known about the regulation of NHE-3 expression by microRNAs. Therefore, current studies were undertaken to examine the potential miRNA candidates that can regulate the expression of NHE-3 in intestinal epithelial cells. In silico analysis, using different algorithms, predicted several miRNAs that target NHE-3. MicroRNAs with highest context and target score, miR-326, miR-744-5p, and miR-330-5p, were selected for the current study. Human NHE-3 gene 3' untranslated region [3'UTR; 160 base pair (bp)] was cloned into pmirGLO vector upstream of luciferase reporter and transiently transfected with mimics of miR-326, miR-744-5p, and miR-330-5p into Caco-2, HT-29, and SK-CO15 cells. Cotransfection of NHE-3 3' UTR with miR-326 and -miR-330-5p mimics resulted in a significant decrease in relative luciferase activity. Transfection of miR-326 and -330-5p mimics into SK-CO15 cells significantly decreased the NHE-3 protein expression, with no change in NHE-3 messenger ribonucleic acid (mRNA) levels. Our findings demonstrate a novel mechanism for posttranscriptional regulation of NHE-3 by miR-326 and -330-5p by translational repression. We speculate that miR-326 and -330-5p dependent pathways may be involved in modulating NHE-3 expression under physiological and pathophysiological conditions.


Subject(s)
MicroRNAs , Sodium-Hydrogen Exchanger 3 , Humans , Caco-2 Cells , Down-Regulation , Epithelial Cells/metabolism , MicroRNAs/genetics , Sodium-Hydrogen Exchanger 3/genetics
8.
Gastroenterology ; 162(6): 1675-1689.e11, 2022 05.
Article in English | MEDLINE | ID: mdl-35032499

ABSTRACT

BACKGROUND & AIMS: Normal gestation involves a reprogramming of the maternal gut microbiome (GM) that contributes to maternal metabolic changes by unclear mechanisms. This study aimed to understand the mechanistic underpinnings of the GM-maternal metabolism interaction. METHODS: The GM and plasma metabolome of CD1, NIH-Swiss, and C57 mice were analyzed with the use of 16S rRNA sequencing and untargeted liquid chromatography-mass spectrometry throughout gestation. Pharmacologic and genetic knockout mouse models were used to identify the role of indoleamine 2,3-dioxygenase (IDO1) in pregnancy-associated insulin resistance (IR). Involvement of gestational GM was studied with the use of fecal microbial transplants (FMTs). RESULTS: Significant variation in GM alpha diversity occurred throughout pregnancy. Enrichment in gut bacterial taxa was mouse strain and pregnancy time point specific, with the species enriched at gestation day 15/19 (G15/19), a point of heightened IR, being distinct from those enriched before or after pregnancy. Metabolomics revealed elevated plasma kynurenine at G15/19 in all 3 mouse strains. IDO1, the rate-limiting enzyme for kynurenine production, had increased intestinal expression at G15, which was associated with mild systemic and gut inflammation. Pharmacologic and genetic inhibition of IDO1 inhibited kynurenine levels and reversed pregnancy-associated IR. FMT revealed that IDO1 induction and local kynurenine level effects on IR derive from the GM in both mouse and human pregnancy. CONCLUSIONS: GM changes accompanying pregnancy shift IDO1-dependent tryptophan metabolism toward kynurenine production, intestinal inflammation, and gestational IR, a phenotype reversed by genetic deletion or inhibition of IDO1. (Gestational Gut Microbiome-IDO1 Axis Mediates Pregnancy Insulin Resistance; EMBL-ENA ID: PRJEB45047. MetaboLights ID: MTBLS3598).


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Animals , Female , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation , Kynurenine/metabolism , Mice , Pregnancy , RNA, Ribosomal, 16S
9.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G223-G231, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34231393

ABSTRACT

Short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fiber exert myriad of beneficial effects including the amelioration of inflammation. SCFAs exist as anions at luminal pH; their entry into the cells depends on the expression and function of monocarboxylate transporters. In this regard, sodium-coupled monocarboxylate transporter-1 (SMCT-1) is one of the major proteins involved in the absorption of SCFA in the mammalian colon. However, very little is known about the mechanisms of regulation of SMCT-1 expression in health and disease. MicroRNAs (miRs) are known to play a key role in modulating gene expression. In silico analysis showed miR-29a, b, and c with highest context score and its binding region was conserved among mammals. The 3'-untranslated region (UTR) of human SMCT-1 gene was cloned into pmirGLO vector upstream of luciferase reporter and transiently transfected with miR-29a, b, and c mimics into Caco-2 and/or T-84 cells. The presence of UTR of this gene significantly decreased luciferase activity compared with empty vector. Cotransfection with miR-29a, b, or c resulted in further decrease in 3'-UTR activity of SMCT-1 luciferase constructs. Mimic transfection significantly decreased SMCT-1 protein expression without altering mRNA expression. Furthermore, the expression of miR-29a and c were significantly lower in mouse colon compared with small intestine, consistent with higher levels of SMCT-1 protein in the colon. Our studies demonstrated a novel finding in which miR-29a, b, and c downregulate SMCT-1 expression in colonic epithelial cells and may partly explain the differential expression of these transporters along the length of the gastrointestinal (GI) tract.NEW & NOTEWORTHY Our study for the first time reports the posttranscriptional regulation of SMCT-1 by miR-29a, b, and c in colonic epithelial cells. We also demonstrate that the expression of these microRNAs is lower in the mouse proximal and distal colon which partially explains the higher expression level of SMCT-1 in the colon compared with small intestine.


Subject(s)
Intestinal Mucosa/metabolism , MicroRNAs/metabolism , Monocarboxylic Acid Transporters/genetics , Caco-2 Cells , Humans , MicroRNAs/genetics , Monocarboxylic Acid Transporters/metabolism
10.
Am J Physiol Cell Physiol ; 320(5): C916-C925, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33760662

ABSTRACT

Niemann-Pick C1 Like-1 (NPC1L1) mediates the uptake of micellar cholesterol by intestinal epithelial cells and is the molecular target of the cholesterol-lowering drug ezetimibe (EZE). The detailed mechanisms responsible for intracellular shuttling of micellar cholesterol are not fully understood due to the lack of a suitable NPC1L1 substrate that can be traced by fluorescence imaging and biochemical methods. 27-Alkyne cholesterol has been previously shown to serve as a substrate for different cellular processes similar to native cholesterol. However, it is not known whether alkyne cholesterol is absorbed via an NPC1L1-dependent pathway. We aimed to determine whether alkyne cholesterol is a substrate for NPC1L1 in intestinal cells. Human intestinal epithelial Caco2 cells were incubated with micelles containing alkyne cholesterol in the presence or absence of EZE. Small intestinal closed loops in C57BL/6J mice were injected with micelles containing alkyne cholesterol with or without EZE. Alkyne cholesterol esterification in Caco2 cells was significantly inhibited by EZE and by inhibitor of clathrin-mediated endocytosis Pitstop 2. The esterification was similarly reduced by inhibitors of the acyl-CoA cholesterol acyltransferase (ACAT). Alkyne cholesterol efficiently labeled the apical membrane of Caco2 cells and the amount retained on the membrane was significantly increased by EZE as judged by accessibility to exogenous cholesterol oxidase. In mouse small intestine, the presence of EZE reduced total alkyne cholesterol uptake by ∼75%. These data show that alkyne cholesterol acts as a substrate for NPC1L1 and may serve as a nonradioactive tracer to measure cholesterol absorption in both in vitro and in vivo models.


Subject(s)
Cholesterol/metabolism , Epithelial Cells/metabolism , Intestinal Absorption , Intestinal Mucosa/metabolism , Membrane Transport Proteins/metabolism , Animals , Anticholesteremic Agents/pharmacology , Biological Transport , Caco-2 Cells , Cholesterol/analogs & derivatives , Endocytosis , Epithelial Cells/drug effects , Ezetimibe/pharmacology , Humans , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Membrane Transport Proteins/drug effects , Mice, Inbred C57BL
11.
Gastroenterology ; 160(4): 1240-1255.e3, 2021 03.
Article in English | MEDLINE | ID: mdl-33189700

ABSTRACT

BACKGROUND & AIMS: The down-regulated in adenoma (DRA) protein, encoded by SLC26A3, a key intestinal chloride anion exchanger, has recently been identified as a novel susceptibility gene for inflammatory bowel disease (IBD). However, the mechanisms underlying the increased susceptibility to inflammation induced by the loss of DRA remain elusive. Compromised barrier is a key event in IBD pathogenesis. The current studies were undertaken to elucidate the impact of DRA deficiency on epithelial barrier integrity and to define underlying mechanisms. METHODS: Wild-type and DRA-knockout (KO) mice and crypt-derived colonoids were used as models for intestinal epithelial response. Paracellular permeability was measured by using fluorescein isothiocyanate-dextran flux. Immunoblotting, immunofluorescence, immunohistochemistry, and ribonucleoprotein immunoprecipitation assays were performed. Gut microbiome analysis was conducted to investigate the impact of DRA deficiency on gut microbial communities. RESULTS: DRA-KO mice exhibited an increased colonic paracellular permeability with significantly decreased levels of tight junction/adherens junction proteins, including ZO-1, occludin, and E-cadherin. A similar expression pattern of occludin and E-cadherin was observed in colonoids derived from DRA-KO mice and short hairpin RNA-mediated DRA knockdown in Caco-2 cells. Microbial analysis showed gut dysbiosis in DRA-KO mice. However, cohousing studies showed that dysbiosis played only a partial role in maintaining tight junction protein expression. Furthermore, our results showed increased binding of RNA-binding protein CUGBP1 with occludin and E-cadherin genes in DRA-KO mouse colon, suggesting that posttranscriptional mechanisms play a key role in gut barrier dysfunction. CONCLUSIONS: To our knowledge, our studies demonstrate a novel role of DRA in maintaining the intestinal epithelial barrier function and potential implications of its dysregulation in IBD pathogenesis.


Subject(s)
Antiporters/deficiency , Chloride-Bicarbonate Antiporters/deficiency , Dysbiosis/immunology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Sulfate Transporters/deficiency , Animals , Antiporters/genetics , CELF1 Protein/metabolism , Caco-2 Cells , Cadherins/metabolism , Chloride-Bicarbonate Antiporters/genetics , Disease Models, Animal , Dysbiosis/microbiology , Dysbiosis/pathology , Gene Knockdown Techniques , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Knockout , Occludin/metabolism , Permeability , Sulfate Transporters/genetics , Tight Junctions/pathology
12.
Front Med (Lausanne) ; 7: 467, 2020.
Article in English | MEDLINE | ID: mdl-32984364

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a major health problem associated with obesity and other features of the metabolic syndrome including insulin resistance and dyslipidemia. The accumulation of lipids in hepatocytes causes liver damage and triggers inflammation, fibrosis, and cirrhosis. Beside fatty acids and triglycerides, evidence showed an increased accumulation of free cholesterol in the liver with subsequent toxic effects contributing to liver damage. The maintenance of cholesterol homeostasis in the body requires a balance between several pathways responsible for cholesterol synthesis, transport and conversion into bile acids. Intestinal absorption is also one of the major determinants of cholesterol homeostasis. The nature of changes in cholesterol homeostasis associated with NAFLD has been a subject of extensive investigations. In this article, we will attempt to provide a brief overview of the current knowledge about the disturbances in cholesterol metabolism associated with NAFLD and discuss how certain molecular targets of these pathways could be exploited for the treatment of this multifactorial disease.

13.
Gene Rep ; 182020 Mar.
Article in English | MEDLINE | ID: mdl-32864506

ABSTRACT

P-glycoprotein (Pgp/MDR1) serves as a biological barrier that protects intestinal epithelial cells (IECs) by transporting out xenobiotics and bacterial toxins. Decreased Pgp function and expression has been seen in mouse models of inflammatory colitis and also in patients with IBD. Pgp knockout mice spontaneously develop severe colitis, which is also seen in human patients with ulcerative colitis. However, whether Pgp is also altered in infectious colitis is not known. Citrobacter rodentium (CR), a murine pathogen has been shown to cause colonic hyperplasia and colitis in mice by attaching to IECs. The current study investigated the direct effects of Citrobacter rodentium infection on intestinal Pgp expression in mice. Mice were challenged with a single dose of C. rodentium (1 × 109 CFU) by oral gavage for 9 days and Pgp expression in the ileum and colon was measured by real time qRT-PCR and immunofluorescence studies. Our results showed that C. rodentium infection significantly decreased Pgp mRNA and protein expression in the colon, although no significant change was observed in the ileum of mice. These findings suggest that inhibition of the efflux protein, Pgp by C. rodentium can cause perturbations in the intestinal epithelial integrity, which could further lead to the pathogenesis of intestinal inflammation as observed in infectious colitis.

14.
Inflamm Bowel Dis ; 26(10): 1607-1618, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32844174

ABSTRACT

BACKGROUND: Diagnosis and monitoring of inflammatory bowel diseases (IBDs) utilize invasive methods including endoscopy and tissue biopsy, with blood tests being less specific for IBDs. Substantial evidence has implicated involvement of the neurohormone serotonin (5-hydroxytryptamine, 5-HT) in the pathophysiology of IBDs. The current study investigated whether serum 5-HT is elevated in patients with active ulcerative colitis (UC) or Crohn's disease (CD). METHODS: Serum samples were obtained from a German cohort of 96 CD and UC patients with active disease, refractory disease, or remission of disease based upon their disease activity index (DAI) and disease history. High pressure liquid chromatography with tandemmass spectrometry was used to measure 5-HT, tryptophan (TRP), and kynurenine (KYN) levels in the serum samples, and Luminex Multiplex ELISA was used to measure cytokine levels. Intestinal mucosal biopsies were obtained from a separate cohort of healthy and CD patients, and the immunoreactivity of the serotonin transporter (SERT) was determined. RESULTS: There was no statistically significant difference in TRP or KYN levels between disease categories in either UC or CD. Interestingly, 5-HT levels were significantly elevated in patients with active CD but not active UC when compared with the levels in remission or refractory disease. Serum 5-HT was superior to C-reactive protein and circulating cytokines in differentiating between disease categories in CD. Additionally, SERT immunoreactivity was decreased in the ileum and colon of patients with CD compared to healthy controls. CONCLUSION: We have shown that the serum 5-HT can differentiate between active disease and refractory disease or remission among CD patients, emphasizing the potential suitability of serum 5-HT as an auxiliary measure in diagnosing active CD.


Subject(s)
Colitis, Ulcerative/blood , Crohn Disease/blood , Serotonin/blood , Severity of Illness Index , Adolescent , Adult , Biopsy , C-Reactive Protein/analysis , Colitis, Ulcerative/pathology , Colon/pathology , Crohn Disease/pathology , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Ileum/pathology , Intestinal Mucosa/pathology , Kynurenine/blood , Male , Middle Aged , Tryptophan/blood , Young Adult
15.
Am J Physiol Cell Physiol ; 318(6): C1294-C1304, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32348179

ABSTRACT

The serotonin transporter (SERT) functions to regulate the availability of serotonin (5-HT) in the brain and intestine. An intestine-specific mRNA variant arising from a unique transcription start site and alternative promoter in the SERT gene has been identified (iSERT; spanning exon 1C). A decrease in SERT is implicated in several gut disorders, including inflammatory bowel diseases (IBD). However, little is known about mechanisms regulating the iSERT variant, and a clearer understanding is warranted for targeting SERT for the treatment of gut disorders. The current studies examined the expression of iSERT across different human intestinal regions and investigated its regulation by HNF4α (hepatic nuclear factor-4α), a transcription factor important for diverse cellular functions. iSERT mRNA abundance was highest in the human ileum and Caco-2 cell line. iSERT mRNA expression was downregulated by loss of HNF4α (but not HNF1α, HNF1ß, or FOXA1) in Caco-2 cells. Overexpression of HNF4α increased iSERT mRNA concomitant with an increase in SERT protein. Progressive promoter deletion and site-directed mutagenesis revealed that the HNF4α response element spans nucleotides -1,163 to -1150 relative to the translation start site. SERT mRNA levels in the intestine were drastically reduced in the intestine-specific HNF4α-knockout mice relative to HNF4αFL/FL mice. Both HNF4α and SERT mRNA levels were also downregulated in mouse model of ileitis (SAMP) compared with AKR control mice. These results establish the transcriptional regulation of iSERT at the gut-specific internal promoter (hSERTp2) and have identified HNF4α as a critical modulator of basal SERT expression in the intestine.


Subject(s)
Epithelial Cells/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Ileitis/metabolism , Ileum/metabolism , Intestinal Mucosa/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Caco-2 Cells , Disease Models, Animal , Epithelial Cells/pathology , Hepatocyte Nuclear Factor 4/deficiency , Hepatocyte Nuclear Factor 4/genetics , Humans , Ileitis/genetics , Ileitis/pathology , Ileum/pathology , Intestinal Mucosa/pathology , Male , Mice, Knockout , Promoter Regions, Genetic , Response Elements , Serotonin Plasma Membrane Transport Proteins/genetics , Transcription, Genetic
16.
J Biol Chem ; 295(14): 4488-4497, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32071081

ABSTRACT

The ileal apical sodium-dependent bile acid transporter (ASBT) is crucial for the enterohepatic circulation of bile acids. ASBT function is rapidly regulated by several posttranslational modifications. One reversible posttranslational modification is S-acylation, involving the covalent attachment of fatty acids to cysteine residues in proteins. However, whether S-acylation affects ASBT function and membrane expression has not been determined. Using the acyl resin-assisted capture method, we found that the majority of ASBT (∼80%) was S-acylated in ileal brush border membrane vesicles from human organ donors, as well as in HEK293 cells stably transfected with ASBT (2BT cells). Metabolic labeling with alkyne-palmitic acid (100 µm for 15 h) also showed that ASBT is S-acylated in 2BT cells. Incubation with the acyltransferase inhibitor 2-bromopalmitate (25 µm for 15 h) significantly reduced ASBT S-acylation, function, and levels on the plasma membrane. Treatment of 2BT cells with saturated palmitic acid (100 µm for 15 h) increased ASBT function, whereas treatment with unsaturated oleic acid significantly reduced ASBT function. Metabolic labeling with alkyne-oleic acid (100 µm for 15 h) revealed that oleic acid attaches to ASBT, suggesting that unsaturated fatty acids may decrease ASBT's function via a direct covalent interaction with ASBT. We also identified Cys-314 as a potential S-acylation site. In conclusion, these results provide evidence that S-acylation is involved in the modulation of ASBT function. These findings underscore the potential for unsaturated fatty acids to reduce ASBT function, which may be useful in disorders in which bile acid toxicity is implicated.


Subject(s)
Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Acylation/drug effects , Acyltransferases/metabolism , Alkynes/chemistry , Bile Acids and Salts/metabolism , Cell Membrane/metabolism , Cysteine/chemistry , Cysteine/metabolism , HEK293 Cells , Humans , Ileum/metabolism , Oleic Acid/chemistry , Oleic Acid/pharmacology , Organic Anion Transporters, Sodium-Dependent/genetics , Palmitates/chemistry , Palmitates/pharmacology , Symporters/genetics
17.
Cell Physiol Biochem ; 54(1): 126-141, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32017483

ABSTRACT

BACKGROUND/AIMS: Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter and hormone with important physiological functions in many organs, including the intestine. We have previously shown that 5-HT activates the aryl hydrocarbon receptor (AhR) in intestinal epithelial cells (IECs) via a serotonin transporter (SERT)-dependent mechanism. AhR is a nuclear receptor that binds a variety of molecules including tryptophan (TRP) metabolites to regulate physiological processes in the intestine including xenobiotic detoxification and immune modulation. We hypothesized that 5-HT activates AhR indirectly by interfering with metabolic clearance of AhR ligands by cytochrome P450 1A1 (CYP1A1). METHODS: Inhibition of CYP1A1 activity by 5-HT was assessed in the human intestinal epithelial cell line Caco-2 and recombinant CYP1A1 microsomes using both luciferase and LC-MS/MS. Degradation of 5-HT by recombinant CYP1A1 was measured by LC-MS/MS. For in vitro studies, CYP1A1 and CYP1B1 mRNA expression levels were measured by RT-PCR and CYP1A1 activity was measured by ethoxyresorufin-O-deethylase (EROD) assays. For in vivo studies, AhR ligands were administered to SERT KO mice and WT littermates and intestinal mucosa CYP1A1 mRNA was measured. RESULTS: We show that 5-HT inhibits metabolism of both the pro-luciferin CYP1A1 substrate Luc-CEE as well as the high affinity AhR ligand 6-formylindolo[3,2-b] carbazole (FICZ). Recombinant CYP1A1 assays revealed that 5-HT is metabolized by CYP1A1 in an NADPH dependent manner. Treatment with 5-HT in TRP-free medium, which is devoid of trace AhR ligands, showed that 5-HT requires the presence of AhR ligands to activate AhR. Cotreatment with 5-HT and FICZ confirmed that 5-HT potentiates induction of AhR target genes by AhR ligands. However, this was only true for ligands which are CYP1A1 substrates such as FICZ. Administration of ß-napthoflavone by gavage or indole-3-carbinol via diet to SERT KO mice revealed that lack of SERT impairs intestinal AhR activation. CONCLUSION: Our studies provide novel evidence of crosstalk between serotonergic and AhR signaling where 5-HT can influence the ability of AhR ligands to activate the receptor in the intestine.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Serotonin/pharmacology , Transcription, Genetic/drug effects , Animals , Caco-2 Cells , Carbazoles/pharmacology , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Humans , Ligands , Male , Mice , Mice, Knockout , RNA, Messenger/metabolism , Receptors, Aryl Hydrocarbon/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/deficiency , Serotonin Plasma Membrane Transport Proteins/genetics , Signal Transduction/drug effects , Substrate Specificity , beta-Naphthoflavone/administration & dosage
18.
Gene Rep ; 182020 Mar.
Article in English | MEDLINE | ID: mdl-34113740

ABSTRACT

The serotonin transporter (SERT, SLC6A4) is a Na+-dependent transporter that regulates the availability of serotonin (5-HT, 5-hydroxytryptamine), a key neurotransmitter and hormone in the brain and the intestine. The human SERT gene consists of two alternate promoters that drive expression of an identical SERT protein. However, there are different mRNA transcript variants derived from these two promoters that differ in their 5' untranslated region (5'UTR), which is the region of the mRNA upstream from the protein-coding region. Two of these transcripts contain exon-1a and are abundant in neuronal tissue, whereas the third transcript contains exon-1c and is abundant in the intestine. The 3'UTR is nearly identical among the transcripts. Current studies tested the hypothesis that the UTRs of SERT influence its expression in intestinal epithelial cells (IECs) by controlling mRNA or protein levels. The SERT UTRs were cloned into luciferase reporter plasmids and luciferase mRNA and activity were measured following transient transfection of the UTR constructs into the model IEC Caco-2. Luciferase activity and mRNA abundance were higher than the empty vector for two of the three 5'UTR variants. Calculation of translation index (luciferase activity divided by the relative luciferase mRNA level) revealed that the exon-1a containing 5'UTRs had enhanced translation when compared to the exon-1c containing 5'UTR which exhibited a low translation efficiency. Compared to the empty vector, the SERT 3'UTR markedly decreased luciferase activity. In silico analysis of the SERT 3'UTR revealed many conserved potential miRNA binding sites that may be responsible for this decrease. In conclusion, we have shown that the UTRs of SERT regulate mRNA abundance and protein expression. Delineating the molecular basis by which the UTRs of SERT influence its expression will lead to an increased understanding of post-transcriptional regulation of SERT in GI disorders associated with altered 5-HT availability.

19.
Acta Physiol (Oxf) ; 228(1): e13332, 2020 01.
Article in English | MEDLINE | ID: mdl-31177627

ABSTRACT

AIM: P-glycoprotein (Pgp/MDR1) plays a major role in intestinal homeostasis. Decrease in Pgp function and expression has been implicated in the pathogenesis of IBD. However, inhibitory mechanisms involved in the decrease of Pgp in inflammation are not fully understood. Angiotensin II (Ang II), a peptide hormone predominantly expressed in the epithelial cells of the crypt-villus junction of the intestine, has been shown to exert pro-inflammatory effects in the gut. It is increased in IBD patients and animals with experimental colitis. Whether Ang II directly influences Pgp is not known. METHODS: Pgp activity was measured as verapamil-sensitive 3 H-digoxin flux. Pgp surface expression and exocytosis were measured by cell surface biotinylation studies. Signalling pathways were elucidated by Western blot analysis and pharmacological approaches. RESULTS: Ang II (10 nM) significantly inhibited Pgp activity at 60 minutes. Ang II-mediated effects on Pgp function were receptor-mediated as the Ang II receptor 1 (ATR1) antagonist, losartan, blocked Pgp inhibition. Ang II effects on Pgp activity appeared to be mediated via PI3 kinase, p38 MAPK and Akt signalling. Ang II-mediated inhibition of Pgp activity was associated with a decrease in the surface membrane expression of Pgp protein via decreased exocytosis and was found to be dependent on the Akt pathway. Short-term treatment of Ang II (2 mg/kg b.wt., 2 hours) to mice also decreased the membrane expression of Pgp protein levels in ileum and colon. CONCLUSION: Our findings provide novel insights into the role of Ang II and ATR1 in decreasing Pgp expression in intestinal inflammation.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Angiotensin II/pharmacology , Epithelial Cells/metabolism , Intestinal Mucosa/cytology , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Angiotensin II/administration & dosage , Animals , Caco-2 Cells , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/genetics , Receptor, Angiotensin, Type 2/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Inflamm Bowel Dis ; 26(4): 534-545, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31634391

ABSTRACT

BACKGROUND: Intestinal epithelial apical membrane Cl-/HCO3- exchanger DRA (downregulated in adenoma, SLC26A3) has emerged as an important therapeutic target for diarrhea, emphasizing the potential therapeutic role of agents that upregulate DRA. All-trans retinoic acid (ATRA), a key vitamin A metabolite, was earlier shown by us to stimulate DRA expression in intestinal epithelial cells. However, its role in modulating DRA in gut inflammation has not been investigated. AIMS: Our aim was to analyze the efficacy of ATRA in counteracting inflammation-induced decrease in DRA in vitro and in vivo. METHODS: Interferon-γ (IFN-γ)-treated Caco-2 cells and dextran sulfate sodium (DSS)-treated C57BL/6J mice served as in vitro and in vivo models of gut inflammation, respectively. The effect of ATRA on IFN-γ-mediated inhibition of DRA function, expression, and promoter activity were elucidated. In the DSS colitis model, diarrheal phenotype, cytokine response, in vivo imaging, myeloperoxidase activity, and DRA expression were measured in the distal colon. RESULTS: All-trans retinoic acid (10 µM, 24 h) abrogated IFN-γ (30 ng/mL, 24 h)-induced decrease in DRA function, expression, and promoter activity in Caco-2 cells. All-trans retinoic acid altered IFN-γ signaling via blocking IFN-γ-induced tyrosine phosphorylation of STAT-1. All-trans retinoic acid cotreatment (1 mg/kg BW, i.p. daily) of DSS-treated mice (3% in drinking water for 7 days) alleviated colitis-associated weight loss, diarrheal phenotype, and induction of IL-1ß and CXCL1 and a decrease in DRA mRNA and protein levels in the colon. CONCLUSION: Our data showing upregulation of DRA under normal and inflammatory conditions by ATRA demonstrate a novel role of this micronutrient in alleviating IBD-associated diarrhea.


Subject(s)
Antiporters/metabolism , Chloride-Bicarbonate Antiporters/metabolism , Colitis/drug therapy , Intestinal Mucosa/drug effects , Sulfate Transporters/metabolism , Tretinoin/pharmacology , Animals , Antiporters/genetics , Caco-2 Cells , Chloride-Bicarbonate Antiporters/genetics , Colon/metabolism , Dextran Sulfate/toxicity , Diarrhea/drug therapy , Disease Models, Animal , Epithelial Cells/metabolism , Humans , Inflammation/metabolism , Interferon-gamma/drug effects , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , Sulfate Transporters/genetics , Up-Regulation , Weight Loss/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...