Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 12(1): 148, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30922368

ABSTRACT

BACKGROUND: Sex separation of mosquitoes at different stages is currently being attempted to ensure the successful release of male mosquitoes in novel vector control approaches. Mechanical and behavioral techniques have been tried most frequently. METHODS: Batches of (n = 300) Aedes aegypti and Ae. albopictus pupae were used for standard sieving (using sieves with 1.12, 1.25, 1.40 and 1.60 mm mesh sizes) and the Fay-Morlan glass plate separation methods. Male and female separation by each method was calculated. For behavioral separation, a spiked blood meal with different concentrations (0, 2, 4, 6, 8 and 10 ppm) of ivermectin and spinosad (spinosyn, 12% w/v), were provided to a batch (n = 300) of adult Ae. aegypti and Ae. albopictus (1:1 sex ratio) followed by observation of mortality. An additional "double feeding method" involved provision of a further blood meal after 24 h, with the same concentrations of ivermectin and spinosad as the initial feeding, followed by a 48-h observation of mortality. All experiments were repeated five times. RESULTS: In the standard sieving method, the percentage of males and females separated at different pore sizes differed significantly (P < 0.05). The majority of the male pupae were collected in the 1.12 mm pore sized sieve for both Ae. aegypti (73%) and Ae. albopictus (69%) while females were retained mainly in the sieve with the pore size of 1.25 mm. In the Fay-Morlan glass plate separation, 99.0% of the Ae. aegypti and 99.2% of the Ae. albopictus introduced male pupae could be separated, but with female contaminations of 16 and 12%, respectively. Provision of a blood meal spiked with 8 ppm of ivermectin under the "double feeding" was identified as the most effective way of achieving 100% female elimination for both Aedes species. CONCLUSIONS: With 100% separation, use of a spiked blood meal is a more effective method of sex separation than the mechanical methods. Application of the spiked blood meal approach as a second separation level for sexes, after applying the Fay-Morlan glass plate method, could achieve 100% sex separation of sexes whilst allowing a reduction in the amount of toxicants required.


Subject(s)
Aedes/physiology , Mosquito Control/methods , Mosquito Vectors , Sex Determination Analysis/methods , Animals , Feeding Behavior , Female , Male
2.
Parasit Vectors ; 11(1): 603, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30463624

ABSTRACT

BACKGROUND: To ensure the success of a mosquito control programme that integrates the sterile insect technique (SIT), it is highly desirable to release sterile males with a maximal lifespan to increase release effectiveness. Understanding sterile male survival under field conditions is thus critical for determining the number of males to be released. Our study aimed to investigate the effect of mass rearing, irradiation, chilling, packing and release time on irradiated male mosquito longevity. METHODS: Anopheles arabiensis and Aedes aegypti immature stages were mass-reared using a rack and tray system. Batches of 50 males irradiated at the pupal stage were immobilised, packed into canisters and chilled for 6 hours at 6 °C. Mosquitoes were then transferred either in the early morning or early evening into climate chambers set to simulate the weather conditions, typical of the beginning of the rainy season in Khartoum, Sudan and Juazeiro, Brazil for An. arabiensis and Ae. aegypti, respectively. The longevity of experimental males was assessed and compared to mass-reared control males subjected either to simulated field or laboratory conditions. RESULTS: The combined irradiation, chilling and packing treatments significantly reduced the longevity of both An. arabiensis and Ae. aegypti under simulated field conditions (P < 0.001). However, packing alone did not significantly reduce longevity of Ae. aegypti (P = 0.38) but did in An. arabiensis (P < 0.001). Overall, the longevity of mass reared, irradiated and packed males was significantly reduced, with the median survival time (days) lower following an early morning introduction (4.62 ± 0.20) compared to an evening (7.34 ± 0.35) in An. arabiensis (P < 0.001). However, there was no significant difference in longevity between morning (9.07 ± 0.54) and evening (7.76 ± 0.50) in Ae. aegypti (P = 0.14). CONCLUSIONS: Our study showed that sterile mass-reared males have a reduced lifespan in comparison to laboratory-maintained controls under simulated field conditions, and that An. arabiensis appeared to be more sensitive to the handling process and release time than Ae. aegypti. Longevity and release time are important parameters to be considered for a successful area-wide integrated vector control programme with a SIT component.


Subject(s)
Aedes/radiation effects , Anopheles/radiation effects , Longevity , Aedes/growth & development , Aedes/physiology , Animals , Anopheles/growth & development , Anopheles/physiology , Climate , Entomology/instrumentation , Entomology/methods , Humidity , Infertility , Male , Pupa/radiation effects , Temperature
3.
Acta Trop ; 132 Suppl: S124-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24299924

ABSTRACT

To control the container-breeding mosquito and major vector of dengue and chikungunya Aedes albopictus, the sterile insect technique (SIT) is proposed as a component of integrated vector management programs in endemic areas. For the technique to be successful, released males, sterilized with 35 Gy of ionizing radiation during the pupal stage, must be able to compete for mating opportunities with wild counterparts and successfully copulate with wild females to induce sterility in the population. Any reduction in competitiveness can be compensated for by increasing the ratio of released sterile to wild males, a ratio which must be optimized for effectiveness and efficiency. Fruit fly SIT programs use field enclosures to test the competitiveness of sterile males to monitor the quality of the colony and adjust release ratios. This is laborious and time consuming, and for mosquito programs it would be advantageous if similarly useful results could be obtained by smaller scale laboratory tests, conducted on a more regular basis. In the present study we compared the competitiveness, as measured by hatching rate of resulting egg batches, of irradiated males measured in small and large laboratory cages and semi-field enclosures in a greenhouse setting, when competing in a 1:1, 3:1, and 5:1 ratio with fertile males. The sterile males were found to be equally competitive when compared to unirradiated counterparts, and a 5:1 ratio was sufficient to reduce, but not eliminate, the fertility of the female populations, irrespective of cage size. Variability in hatch rate in eggs laid by individual females and so-called indeterminate matings, when we could not be certain whether a female had mated a fertile or a sterile male, could be investigated by closer investigation of mating status and the frequency of multiple matings in Ae. albopictus. The laboratory results are encouraging for the effectiveness of the SIT using irradiated males of this species, and we support further assessment in the field.


Subject(s)
Aedes/physiology , Aedes/radiation effects , Sexual Behavior, Animal/radiation effects , Animals , Animals, Laboratory , Competitive Behavior/radiation effects , Male
SELECTION OF CITATIONS
SEARCH DETAIL