Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech Eng ; 144(7)2022 07 01.
Article in English | MEDLINE | ID: mdl-34897371

ABSTRACT

In vitro biomechanical testing is common in the field of orthopedics when novel devices are investigated prior to human trials. It is typically necessary to apply loads through tendons to simulate normal activities, such as walking during a foot and ankle study. However, attachment of tendons to linear actuators has proven challenging because of the tendency of clamps to either slip off or rupture the tendon. Various techniques have been utilized. Freeze clamping is generally accepted as the gold standard for very high load testing in excess of 3000 N, but is expensive, time-consuming, and requires significant ancillary equipment. Purely mechanical solutions such as metal jaw clamps, wire meshes, and others have been explored, but these techniques are either costly, have low load capacities, or have not proven to be reproducible. We have developed a novel tendon clamping technique that utilizes a slip-resistant polyester mesh sleeving that encases the tendon and is fixated at the bottom of the tendon/sleeve interaction with a giftbox suture. The loose end of the sleeving can then be tied in to the linear actuator or load cell apparatus using a timber hitch knot. The sleeving technique allows for loads of 2000-2500 N on the Achilles tendon, and is inexpensive, reproducible, and can be modified to apply loads to smaller tendons as well, though a length of tendon/sleeve overlap of at least 16 cm is required to reach maximum loads. This technique should assist researchers in integrating muscle forces into future biomechanical study designs.


Subject(s)
Achilles Tendon , Surgical Mesh , Achilles Tendon/surgery , Biomechanical Phenomena , Constriction , Humans , Rupture/surgery
2.
J Neurosurg Spine ; 36(6): 900-908, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-34920420

ABSTRACT

OBJECTIVE: Excessive stress and motion at the L5-S1 level can lead to degenerative changes, especially in patients with posterior instrumentation suprajacent to L5. Attention has turned to utilization of L5-S1 anterior lumbar interbody fusion (ALIF) to stabilize the lumbosacral junction. However, questions remain regarding the effectiveness of stand-alone ALIF in the setting of prior posterior instrumented fusions terminating at L5. The purpose of this study was to assess the biomechanical stability of an L5-S1 ALIF with increasing lengths of posterior thoracolumbar constructs. METHODS: Seven human cadaveric spines (T9-sacrum) were instrumented with pedicle screws from T10 to L5 and mounted to a 6 degrees-of-freedom robot. Posterior fusion construct lengths (T10-L5, T12-L5, L2-5, and L4-5) were instrumented to each specimen, and torque-fusion level relationships were determined for each construct in flexion-extension, axial rotation, and lateral bending. A stand-alone L5-S1 ALIF was then instrumented, and L5-S1 motion was measured as increasing pure moments (2 to 12 Nm) were applied. Motion reduction was calculated by comparing L5-S1 motion across the ALIF and non-ALIF states. RESULTS: The average motion at L5-S1 in axial rotation, flexion-extension, and lateral bending was assessed for each fusion construct with and without ALIF. After adding ALIF to a posterior fusion, L5-S1 motion was significantly reduced relative to the non-ALIF state in all but one fused surgical condition (p < 0.05). Longer fusions with ALIF produced larger L5-S1 motions, and in some cases resulted in motions higher than native state motion. CONCLUSIONS: Posterior fusion constructs up to L4-5 could be appropriately stabilized by a stand-alone L5-S1 ALIF when using a nominal threshold of 80% reduction in native motion as a potential positive indicator of fusion. The results of this study allow conclusions to be drawn from a biomechanical standpoint; however, the clinical implications of these data are not well defined. These findings, when taken in appropriate clinical context, can be used to better guide clinicians seeking to treat L5-S1 pathology in patients with prior posterior thoracolumbar constructs.

3.
J Neurosurg Spine ; : 1-7, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34598153

ABSTRACT

OBJECTIVE: The direct lateral approach is an alternative to the transoral or endonasal approaches to ventral epidural lesions at the lower craniocervical junction. In this study, the authors performed, to their knowledge, the first in vitro biomechanical evaluation of the craniovertebral junction after sequential unilateral C1 lateral mass resection. The authors hypothesized that partial resection of the lateral mass would not result in a significant increase in range of motion (ROM) and may not require internal stabilization. METHODS: The authors performed multidirectional in vitro ROM testing using a robotic spine testing system on 8 fresh cadaveric specimens. We evaluated ROM in 3 primary movements (axial rotation [AR], flexion/extension [FE], and lateral bending [LB]) and 4 coupled movements (AR+E, AR+F, LB + left AR, and LB + right AR). Testing was performed in the intact state, after C1 hemilaminectomy, and after sequential 25%, 50%, 75%, and 100% C1 lateral mass resection. RESULTS: There were no significant increases in occipital bone (Oc)-C1, C1-2, or Oc-C2 ROM after C1 hemilaminectomy and 25% lateral mass resection. After 50% resection, Oc-C1 AR ROM increased by 54.4% (p = 0.002), Oc LB ROM increased by 47.8% (p = 0.010), and Oc-C1 AR+E ROM increased by 65.8% (p < 0.001). Oc-C2 FE ROM increased by 7.2% (p = 0.016) after 50% resection; 75% and 100% lateral mass resection resulted in further increases in ROM. CONCLUSIONS: In this cadaveric biomechanical study, the authors found that unilateral C1 hemilaminectomy and 25% resection of the C1 lateral mass did not result in significant biomechanical instability at the occipitocervical junction, and 50% resection led to significant increases in Oc-C2 ROM. This is the first biomechanical study of lateral mass resection, and future studies can serve to validate these findings.

4.
Spine J ; 20(4): 638-656, 2020 04.
Article in English | MEDLINE | ID: mdl-31669612

ABSTRACT

BACKGROUND CONTEXT: Bertolotti syndrome (BS) is caused by pseudoarticulation between an aberrant L5 transverse process and the sacral ala, termed a lumbosacral transitional vertebra (LSTV). BS is thought to cause low back pain and is treated with resection or fusion, both of which have shown success. Acquiring cadavers with BS is challenging. Thus, we combined 3D printing, based on BS patient CT scans, with normal cadaveric spines to create a BS model. We then performed biomechanical testing to determine altered kinematics from LSTV with surgical interventions. Force sensing within the pseudojoint modeled nociception for different trajectories of motion and surgical conditions. PURPOSE: This study examines alterations in spinal biomechanics with LSTVs and with various surgical treatments for BS in order to learn more about pain and degeneration in this condition, in order to help optimize surgical decision-making. In addition, this study evaluates BS histology in order to better understand the pathology and to help define pain generators-if, indeed, they actually exist. STUDY DESIGN/SETTING: Model Development: A retrospective patient review of 25 patients was performed to determine the imaging criteria that defines the classical BS patient. Surgical tissue was extracted from four BS patients for 3D-printing material selection. Biomechanical Analysis. This was a prospective cadaveric biomechanical study of seven spines evaluating spinal motions, and loads, over various surgical conditions (intact, LSTV, and LSTV with various fusions). Additionally, forces at the LSTV joint were measured for the LSTV and LSTV with fusion condition. Histological Analysis: Histologic analysis was performed prospectively on the four surgical specimens from patients undergoing pseudoarthrectomy for BS at our institution to learn more about potential pain generators. PATIENT SAMPLE: The cadaveric portion of the study involved seven cadaveric spines. Four patients were prospectively recruited to have their surgical specimens assessed histologically and biomechanically for this study. Patients under the age of 18 were excluded. OUTCOME MEASURES: Physiological measures recorded in this study were broken down into histologic analysis, tissue biomechanical analysis, and joint biomechanical analysis. Histologic analysis included pathologist interpretation of Hematoxylin and Eosin staining, as well as S-100 staining. Tissue biomechanical analysis included stiffness measurements. Joint biomechanical analysis included range of motion, resultant torques, relative axis angles, and LSTV joint forces. METHODS: This study received funding from the American Academy of Neurology Medical Student Research Scholarship. Three authors hold intellectual property rights in the simVITRO robotic testing system. No other authors had relevant conflicts of interest for this study. CT images were segmented for a representative BS patient and cadaver spines. Customized cutting and drilling guides for LSTV attachment were created for individual cadavers. 3D-printed bone and cartilage structural properties were based on surgical specimen stiffness, and specimens underwent histologic analysis via Hematoxylin and Eosin, as well as S-100 staining. Joint biomechanical testing was performed on the robotic testing system for seven specimens. Force sensors detected forces in the LSTV joint. Kruskal-Wallis tests and Dunnett's tests were used for statistical analysis with significance bounded to p<.05. RESULTS: LSTV significantly reduces motion at the L5-S1 level, particularly in lateral bending and axial rotation. Meanwhile, the LSTV increases adjacent segment motion significantly at the L2-L3 level, whereas other levels have nonsignificant trends toward increased motion with LSTV alone. Fusion involving L4-S1 (L4-L5 and L5-S1) to treat adjacent level degeneration associated with an LSTV is associated with a significant increase in adjacent segment motion at all levels other than L5-S1 compared to LSTV alone. Fusion of L5-S1 alone with LSTV significantly increases L3-L4 adjacent segment motion compared to LSTV alone. Last, ipsilateral lateral bending with or without ipsilateral axial rotation produces the greatest force on the LSTV, and these forces are significantly reduced with L5-S1 fusion. CONCLUSIONS: BS significantly decreases L5-S1 mobility, and increases some adjacent segment motion, potentially causing patient activity restriction and discomfort. Ipsilateral lateral bending with or without ipsilateral axial rotation may cause the greatest discomfort overall in these patients, and fusion of the L5-S1 or L4-S1 levels may reduce pain associated with these motions. However, due to increased adjacent segment motion with fusions compared to LSTV alone, resection of the joint may be the better treatment option if the superior levels are not unstable preoperatively. CLINICAL SIGNIFICANCE: This study's results indicate that patients with BS have significantly altered spinal biomechanics and may develop pain due to increased loading forces at the LSTV joint with ipsilateral lateral bending and axial rotation. In addition, increased motion at superior levels when an LSTV is present may lead to degeneration over time. Based upon results of LSTV joint force testing, these patients' pain may be effectively treated surgically with LSTV resection or fusion involving the LSTV level if conservative management fails. Further studies are being pursued to evaluate the relationship between in vivo motion of BS patients, spinal and LSTV positioning, and pain generation to gain a better understanding of the exact source of pain in these patients. The methodologies utilized in this study can be extrapolated to recreate other spinal conditions that are poorly understood, and for which few native cadaveric specimens exist.


Subject(s)
Low Back Pain , Spinal Fusion , Biomechanical Phenomena , Cadaver , Humans , Low Back Pain/etiology , Low Back Pain/surgery , Lumbar Vertebrae/surgery , Prospective Studies , Range of Motion, Articular , Retrospective Studies , Spinal Fusion/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...