ABSTRACT
BACKGROUND: The endogenous purine 8-aminoguanine induces diuresis/natriuresis/glucosuria by inhibiting PNPase (purine nucleoside phosphorylase); however, mechanistic details are unknown. METHODS: Here, we further explored in rats 8-aminoguanine's effects on renal excretory function by combining studies using intravenous 8-aminoguanine, intrarenal artery infusions of PNPase substrates (inosine and guanosine), renal microdialysis, mass spectrometry, selective adenosine receptor ligands, adenosine receptor knockout rats, laser doppler blood flow analysis, cultured renal microvascular smooth muscle cells, HEK293 cells expressing A2B receptors and homogeneous time resolved fluorescence assay for adenylyl cyclase activity. RESULTS: Intravenous 8-aminoguanine caused diuresis/natriuresis/glucosuria and increased renal microdialysate levels of inosine and guanosine. Intrarenal inosine, but not guanosine, exerted diuretic/natriuretic/glucosuric effects. In 8-aminoguanine-pretreated rats, intrarenal inosine did not induce additional diuresis/natriuresis/glucosuria. 8-Aminoguanine did not induce diuresis/natriuresis/glucosuria in A2B-receptor knockout rats, yet did so in A1- and A2A-receptor knockout rats. Inosine's effects on renal excretory function were abolished in A2B knockout rats. Intrarenal BAY 60-6583 (A2B agonist) induced diuresis/natriuresis/glucosuria and increased medullary blood flow. 8-Aminoguanine increased medullary blood flow, a response blocked by pharmacological inhibition of A2B, but not A2A, receptors. In HEK293 cells expressing A2B receptors, inosine activated adenylyl cyclase, and this was abolished by MRS 1754 (A2B antagonist). In renal microvascular smooth muscle cells, 8-aminoguanine and forodesine (PNPase inhibitor) increased inosine and 3',5'-cAMP; however, in cells from A2B knockout rats, 8-aminoguanine and forodesine did not augment 3',5'-cAMP yet increased inosine. CONCLUSIONS: 8-Aminoguanine induces diuresis/natriuresis/glucosuria by increasing renal interstitial levels of inosine which, via A2B receptor activation, increases renal excretory function, perhaps in part by increasing medullary blood flow.
Subject(s)
Adenylyl Cyclases , Diuresis , Rats , Humans , Animals , Adenylyl Cyclases/pharmacology , HEK293 Cells , Diuretics/pharmacology , Natriuresis , Receptors, Purinergic P1 , Inosine/pharmacologyABSTRACT
BACKGROUND: We had previously conducted a double-blind, randomized placebo-controlled, partial cross-over trial showing that 12 weeks of dipyridamole decreased CD8 T-cell activation among treated HIV(+) individuals by increasing extracellular adenosine levels. METHODS: In this substudy, rectosigmoid biopsies were obtained from 18 participants (9 per arm), to determine whether 12 weeks of dipyridamole affects mucosal immune cells. Participants randomized to placebo were then switched to dipyridamole for 12 weeks while the treatment arm continued dipyridamole for another 12 weeks. We evaluated T-cell frequencies and plasma markers of microbial translocation and intestinal epithelial integrity. Linear regression models on log-transformed outcomes were used for the primary 12-week analysis. RESULTS: Participants receiving dipyridamole had a median 70.2% decrease from baseline in regulatory T cells (P = 0.007) and an 11.3% increase in CD8 T cells (P = 0.05). There was a nonsignificant 10.80% decrease in plasma intestinal fatty acid binding protein levels in the dipyridamole arm compared with a 9.51% increase in the placebo arm. There were no significant differences in plasma levels of ß-D-glucan. In pooled analyses, there continued to be a significant decrease in regulatory T cells (-44%; P = 0.004). There was also a trend for decreased CD4 and CD8 T-cell activation. CONCLUSION: Increasing extracellular adenosine levels using dipyridamole in virally suppressed HIV (+) individuals on antiretroviral therapy can affect regulation of gut mucosal immunity.
Subject(s)
Anti-HIV Agents/therapeutic use , Dipyridamole/pharmacology , HIV Infections/drug therapy , Intestinal Mucosa/drug effects , T-Lymphocytes, Regulatory/drug effects , Adenosine/metabolism , Biopsy , CD8-Positive T-Lymphocytes/drug effects , Cross-Over Studies , Female , Flow Cytometry , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Lymphocyte Activation/drug effects , Male , Middle AgedABSTRACT
SDF-1α (stromal cell-derived factor-1α) is a CXCR4-receptor agonist and DPP4 (dipeptidyl peptidase 4) substrate. SDF-1α, particularly when combined with sitagliptin to block the metabolism of SDF-1α by DPP4, stimulates proliferation of cardiac fibroblasts via the CXCR4 receptor; this effect is greater in cells from spontaneously hypertensive rats versus Wistar-Kyoto normotensive rats. Emerging evidence indicates that ubiquitin(1-76) exists in plasma and is a potent CXCR4-receptor agonist. Therefore, we hypothesized that ubiquitin(1-76), similar to SDF-1α, should increase proliferation of cardiac fibroblasts. Contrary to our working hypothesis, ubiquitin(1-76) did not stimulate cardiac fibroblast proliferation, yet unexpectedly antagonized the proproliferative effects of SDF-1α combined with sitagliptin. In this regard, ubiquitin(1-76) was more potent in spontaneously hypertensive versus Wistar-Kyoto cells. In the presence of 6bk (selective inhibitor of insulin-degrading enzyme [IDE]; an enzyme known to convert ubiquitin(1-76) to ubiquitin(1-74)), ubiquitin(1-76) no longer antagonized the proproliferative effects of SDF-1α/sitagliptin. Ubiquitin(1-74) also antagonized the proproliferative effects of SDF-1α/sitagliptin, and this effect of ubiquitin(1-74) was not blocked by 6bk and was >10-fold more potent compared with ubiquitin(1-76). Neither ubiquitin(1-76) nor ubiquitin(1-74) inhibited the proproliferative effects of the non-CXCR4 receptor agonist neuropeptide Y (activates Y1 receptors). Cardiac fibroblasts expressed IDE mRNA, protein, and activity and converted ubiquitin(1-76) to ubiquitin(1-74). Spontaneously hypertensive fibroblasts expressed greater IDE activity. Extracellular ubiquitin(1-76) blocks the proproliferative effects of SDF-1α/sitagliptin via its conversion by IDE to ubiquitin(1-74), a potent CXCR4 antagonist. Thus, IDE inhibitors, particularly when combined with DPP4 inhibitors or hypertension, could increase the risk of cardiac fibrosis.
Subject(s)
Cell Proliferation , Chemokine CXCL12/metabolism , Fibroblasts , Hypertension/metabolism , Insulysin , Myocardium/pathology , Receptors, CXCR4 , Animals , Blood Pressure/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cells, Cultured , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis , Insulysin/antagonists & inhibitors , Insulysin/metabolism , Neuropeptide Y/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, CXCR4/agonists , Receptors, CXCR4/metabolism , Signal Transduction , Sitagliptin Phosphate/pharmacology , Ubiquitin/metabolismABSTRACT
The influence of adenosine receptors on blood pressure in salt-sensitive hypertension is unknown. Here, we examined the effects of salt diets on arterial blood pressures (radiotelemetry) in female and male Dahl salt-sensitive wild-type versus female and male Dahl salt-sensitive A1, A2A, or A2B receptor knockouts (A1KOs, A2AKOs, and A2BKOs, respectively). At baseline, all rats were on a 0.3% salt diet; then separate groups were switched to either 4% or 8% salt diet for 2 weeks. Compared with wild-types, baseline pressures were not affected by knockout of A1 or A2B receptors; yet, mean, systolic, and diastolic pressures were significantly (P<0.01) higher in A2AKOs versus wild-types, an effect independent of sex. During the second week on a 4% salt diet, mean, systolic, and diastolic blood pressures (mm Hg, mean±SEM) in female A1KOs (176±5, 209±5, and 147±4, respectively) and A2BKOs (166±8, 198±9, and 139±8, respectively) were significantly lower (P<0.001) than wild-type on a 4% salt diet (202±4, 240±5, and 172±3, respectively). Male A1KOs and A2BKOs were not protected against 4% salt diet-induced hypertension. This female advantage was overwhelmed by an 8% salt diet. Female and male A2AKOs were more salt sensitive, a phenotype that was apparent in male A2AKOs on 4% and 8% salt diets and in females on 8% salt diet. Female A1KOs and A2BKOs were less susceptible to salt-induced stroke and experienced improved survival. Adenosine receptors influence blood pressure and survival in salt-sensitive rats, and the impact of deleting adenosine receptors on blood pressure and survival depends on salt diet and sex.
Subject(s)
Blood Pressure/physiology , Gene Expression Regulation , RNA/genetics , Receptors, Purinergic P1/genetics , Sodium Chloride, Dietary/pharmacology , Animals , Diet, Sodium-Restricted , Disease Models, Animal , Female , Hypertension/metabolism , Hypertension/physiopathology , Male , Rats , Rats, Inbred Dahl , Receptors, Purinergic P1/biosynthesis , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
UNLABELLED: Because the effects of dipeptidyl peptidase 4 (DPP4) inhibitors on blood pressure are controversial, we examined the long-term effects of sitagliptin (80 mg/kg per day) on blood pressure (radiotelemetry) in spontaneously hypertensive rats (SHR), Wistar-Kyoto rats, and Zucker Diabetic-Sprague Dawley rats (metabolic syndrome model). In SHR, chronic (3 weeks) sitagliptin significantly increased systolic, mean, and diastolic blood pressures by 10.3, 9.2, and 7.9 mm Hg, respectively, a response abolished by coadministration of BIBP3226 (2 mg/kg per day; selective Y1-receptor antagonist). Sitagliptin also significantly increased blood pressure in SHR treated with hydralazine (vasodilator; 25 mg/kg per day) or enalapril (angiotensin-converting enzyme inhibitor; 10 mg/kg per day). In Wistar-Kyoto rats, chronic sitagliptin slightly decreased systolic, mean, and diastolic blood pressures (-1.8, -1.1, and -0.4 mm Hg, respectively). In Zucker Diabetic-Sprague Dawley rats, chronic sitagliptin decreased systolic, mean, and diastolic blood pressures by -7.7, -5.8, and -4.3 mm Hg, respectively, and did not alter the antihypertensive effects of chronic enalapril. Because DPP4 inhibitors impair the metabolism of neuropeptide Y1-36 (NPY1-36; Y1-receptor agonist) and glucagon-like peptide (GLP)-1(7-36)NH2 (GLP-1 receptor agonist), we examined renovascular responses to NPY1-36 and GLP-1(7-36)NH2 in isolated perfused SHR and Zucker Diabetic-Sprague Dawley kidneys pretreated with norepinephrine (to induce basal tone). In Zucker Diabetic-Sprague Dawley kidneys, NPY1-36 and GLP-1(7-36)NH2 exerted little, if any, effect on renovascular tone. In contrast, in SHR kidneys, both NPY1-36 and GLP-1(7-36)NH2 elicited potent and efficacious vasoconstriction. IN CONCLUSION: (1) The effects of DPP4 inhibitors on blood pressure are context dependent; (2) The context-dependent effects of DPP4 inhibitors are due in part to differential renovascular responses to DPP4's most important substrates (NPY136 and GLP-1(736)NH2) [corrected]; (3) Y1 receptor antagonists may prevent the prohypertensive and possibly augment the antihypertensive effects of DPP4 inhibitors.