Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Sci Total Environ ; 933: 173065, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38723969

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) increase the ability of plants to obtain nitrogen (N) from the soil, and thus can affect emissions of nitrous oxide (N2O), a long-lived potent greenhouse gas. However, the mechanisms underlying the effects of AMF on N2O emissions are still poorly understood, particularly in agroecosystems with different forms of N fertilizer inputs. Utilizing a mesocosm experiment in field, we examined the effects of AMF on N2O emissions via their influence on maize root traits and denitrifying microorganisms under ammonia and nitrate fertilizer input using 15N isotope tracer. Here we show that the presence of AMF alone or both maize roots and AMF increased maize biomass and their 15N uptake, root length, root surface area, and root volume, but led to a reduction in N2O emissions under both N input forms. Random forest model showed that root length and surface area were the most important predictors of N2O emissions. Additionally, the presence of AMF reduced the (nirK + nirS)/nosZ ratio by increasing the relative abundance of nirS-Bradyrhizobium and Rubrivivax with ammonia input, but reducing nosZ-Azospirillum, Cupriavidus and Rhodopseudomonas under both fertilizer input. Further, N2O emissions were significantly and positively correlated with the nosZ-type Azospirillum, Cupriavidus and Rhodopseudomonas, but negatively correlated with the nirS-type Bradyrhizobium and Rubrivivax. These results indicate that AMF reduce N2O emissions by increasing root length to explore N nutrients and altering the community composition of denitrifiers, suggesting that effective management of N fertilizer forms interacting with the rhizosphere microbiome may help mitigate N2O emissions under future N input scenarios.


Subject(s)
Denitrification , Mycorrhizae , Nitrous Oxide , Plant Roots , Soil Microbiology , Soil , Mycorrhizae/physiology , Nitrous Oxide/analysis , Plant Roots/microbiology , Soil/chemistry , Zea mays , Fertilizers , Air Pollutants/analysis
2.
Glob Chang Biol ; 30(2): e17201, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38385993

ABSTRACT

Globally increased nitrogen (N) to phosphorus (P) ratios (N/P) affect the structure and functioning of terrestrial ecosystems, but few studies have addressed the variation of foliar N/P over time in subtropical forests. Foliar N/P indicates N versus P limitation in terrestrial ecosystems. Quantifying long-term dynamics of foliar N/P and their potential drivers is crucial for predicting nutrient status and functioning in forest ecosystems under global change. We detected temporal trends of foliar N/P, quantitatively estimated their potential drivers and their interaction between plant types (evergreen vs. deciduous and trees vs. shrubs), using 1811 herbarium specimens of 12 widely distributed species collected during 1920-2010 across China's subtropical forests. We found significant decreases in foliar P concentrations (23.1%) and increases in foliar N/P (21.2%). Foliar N/P increased more in evergreen species (22.9%) than in deciduous species (16.9%). Changes in atmospheric CO2 concentrations ( P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ ), atmospheric N deposition and mean annual temperature (MAT) dominantly contributed to the increased foliar N/P of evergreen species, while P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ , MAT, and vapor pressure deficit, to that of deciduous species. Under future Shared Socioeconomic Pathway (SSP) scenarios, increasing MAT and P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ would continuously increase more foliar N/P in deciduous species than in evergreen species, with more 12.9%, 17.7%, and 19.4% versus 6.1%, 7.9%, and 8.9% of magnitudes under the scenarios of SSP1-2.6, SSP3-7.0, and SSP5-8.5, respectively. The results suggest that global change has intensified and will progressively aggravate N-P imbalance, further altering community composition and ecosystem functioning of subtropical forests.


Subject(s)
Ecosystem , Forests , Nitrogen , Phosphorus , China
3.
Environ Monit Assess ; 196(2): 140, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206437

ABSTRACT

College and university campuses with a notable arboreal component provide unique opportunities for carrying out ecological research. The University of West Florida Campus Ecosystem Study (UWF CES) was established in 2019 as interconnected research to take advantage of the extensive arborescent nature of the UWF campus, particularly concerning longleaf pine (Pinus palustris). One of these investigations established permanent plots in forested sites of two contrasting types, one dominated by longleaf pine ("pine site") and the other dominated by hardwoods ('hardwood site'). This study used these plots to examine the influence of forest vegetation on light availability and soil processes. Light was measured as photosynthetically active radiation (and expressed as photon flux density-PFD) with a handheld meter in each plot. Soil was sampled to 5 cm in each plot; texture was measured with the hydrometer method. Identical sampling methods were carried out in a persistent canopy opening to assess light and soil conditions under maximum solar radiation. Mean PFD was ~4× higher in pine stands than in hardwood stands; PFD was 12.8 and 3.5% of full light in the pine and hardwood stands, respectively. All soils were dominated by coarse-textured sands, but silt was significantly higher in pine stand soil and higher still in the canopy opening. Among forest stand plots, sand was negatively related to PFD, whereas clay was positively related to PFD. Across the three sites, silt was positively related to PFD. These relationships are consistent with the importance of solar radiation as one of many drivers of soil weathering.


Subject(s)
Ecosystem , Pinus , Environmental Monitoring , Florida , Forests , Sand , Soil
4.
Microb Ecol ; 85(3): 951-964, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36662284

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) establish mutualistic relationships with the majority of terrestrial plants, increasing plant uptake of soil nitrogen (N) in exchange for photosynthates. And may influence soil ammonia (NH3) volatilization and nitrous oxide (N2O) emissions directly by improving plant N uptake, and/or indirectly by modifying soil bacterial community composition for the soil C availability increasing. However, the effects of AMF on soil NH3 volatilization and N2O emissions and their underlying mechanisms remain unclear. We carried out two independent experiments using contrasting methods, one with a compartmental box device (in 2016) and the other with growth pot experiment (in 2020) to examine functional relationships between AMF and soil NH3 volatilization and N2O emissions under varying N input. The presence of AMF significantly reduced soil NH3 volatilization and N2O emissions while enhancing plant biomass and plant N acquisition, and reducing soil NH4+ and NO3-, even with high N input. The presence of AMF also significantly reduced the relative abundance within the bacterial orders Sphingomonadales and Rhizobiales. Sphingomonadales correlated significantly and positively with soil NH3 volatilization in 2016 and N2O emissions, whereas Rhizobiales correlated positively with soil N2O emissions. High N input significantly increased soil NH3 volatilization and N2O emissions with increasing relative abundance of Sphingomonadales and Rhizobiales. These findings demonstrate the contribution of AMF in regulating NH3 and N2O emission by improving plant N uptake and altering soil bacterial communities. They also suggest that altering the rhizosphere microbiome might offer additional potential for restoration of N-enriched agroecosystems.


Subject(s)
Mycorrhizae , Soil , Nitrous Oxide , Ammonia/analysis , Mycorrhizae/chemistry , Volatilization , Nitrogen , Fertilizers/analysis , Agriculture
6.
Nat Commun ; 13(1): 7837, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36550094

ABSTRACT

Ungulate populations are increasing across Europe with important implications for forest plant communities. Concurrently, atmospheric nitrogen (N) deposition continues to eutrophicate forests, threatening many rare, often more nutrient-efficient, plant species. These pressures may critically interact to shape biodiversity as in grassland and tundra systems, yet any potential interactions in forests remain poorly understood. Here, we combined vegetation resurveys from 52 sites across 13 European countries to test how changes in ungulate herbivory and eutrophication drive long-term changes in forest understorey communities. Increases in herbivory were associated with elevated temporal species turnover, however, identities of winner and loser species depended on N levels. Under low levels of N-deposition, herbivory favored threatened and small-ranged species while reducing the proportion of non-native and nutrient-demanding species. Yet all these trends were reversed under high levels of N-deposition. Herbivores also reduced shrub cover, likely exacerbating N effects by increasing light levels in the understorey. Eutrophication levels may therefore determine whether herbivory acts as a catalyst for the "N time bomb" or as a conservation tool in temperate forests.


Subject(s)
Forests , Herbivory , Plants , Biodiversity , Nitrogen
7.
Environ Sci Technol ; 56(18): 13461-13472, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36041174

ABSTRACT

Mycorrhizae are ubiquitous symbiotic associations between arbuscular mycorrhizal fungi (AMF) and terrestrial plants, in which AMF receive photosynthates from and acquire soil nutrients for their host plants. Plant uptake of soil nitrogen (N) reduces N substrate for microbial processes that generate nitrous oxide (N2O), a potent greenhouse gas. However, the underlying microbial mechanisms remain poorly understood, particularly in agroecosystems with high reactive N inputs. We examined how plant roots and AMF affect N2O emissions, N2O-producing (nirK and nirS) and N2O-consuming (nosZ) microbes under normal and high N inputs in conventional (CONV) and organically managed (OM) soils. Here, we show that high N input increased soil N2O emissions and the ratio of nirK to nirS microbes. Roots and AMF did not affect the (nirK + nirS)/nosZ ratio but significantly reduced N2O emissions and the nirK/nirS ratio. They reduced the nirK/nirS ratio by reducing nirK-Rhodobacterales but increasing nirS-Rhodocyclales in the CONV soil while decreasing nirK-Burkholderiales but increasing nirS-Rhizobiales in the OM soil. Our results indicate that plant roots and AMF reduced N2O emission directly by reducing soil N and indirectly through shifting the community composition of N2O-producing microbes in N-enriched agroecosystems, suggesting that harnessing the rhizosphere microbiome through agricultural management might offer additional potential for N2O emission mitigation.


Subject(s)
Greenhouse Gases , Mycorrhizae , Denitrification , Nitrogen , Nitrous Oxide/analysis , Soil/chemistry , Soil Microbiology
8.
Glob Chang Biol ; 28(18): 5441-5452, 2022 09.
Article in English | MEDLINE | ID: mdl-35653265

ABSTRACT

Foliar stable nitrogen (N) isotopes (δ15 N) generally reflect N availability to plants and have been used to infer about changes thereof. However, previous studies of temporal trends in foliar δ15 N have ignored the influence of confounding factors, leading to uncertainties on its indication to N availability. In this study, we measured foliar δ15 N of 1811 herbarium specimens from 12 plant species collected in southern China forests from 1920 to 2010. We explored how changes in atmospheric CO2 , N deposition and global warming have affected foliar δ15 N and N concentrations ([N]) and identified whether N availability decreased in southern China. Across all species, foliar δ15 N significantly decreased by 0.82‰ over the study period. However, foliar [N] did not decrease significantly, implying N homeostasis in forest trees in the region. The spatiotemporal patterns of foliar δ15 N were explained by mean annual temperature (MAT), atmospheric CO2 ( P CO 2 ), atmospheric N deposition, and foliar [N]. The spatiotemporal trends of foliar [N] were explained by MAT, temperature seasonality, P CO 2 , and N deposition. N deposition within the rates from 5.3 to 12.6 kg N ha-1  year-1 substantially contributed to the temporal decline in foliar δ15 N. The decline in foliar δ15 N was not accompanied by changes in foliar [N] and therefore does not necessarily reflect a decline in N availability. This is important to understand changes in N availability, which is essential to validate and parameterize biogeochemical cycles of N.


Subject(s)
Carbon Dioxide , Plant Leaves , China , Nitrogen/analysis , Nitrogen Isotopes/analysis , Plant Leaves/chemistry , Plants , Trees
9.
Curr Top Behav Neurosci ; 55: 209-250, 2022.
Article in English | MEDLINE | ID: mdl-33683680

ABSTRACT

Suicidality presents a major global health concern and its association with epilepsy has been suggested. The body of evidence is growing due to targeted epidemiological studies, genetic findings, and neuroimaging data, use of specific neuropsychiatric inventories, neuropsychological tests, and metabolic and immunological studies.Suicide tendencies and psychiatric comorbidity such as depression are not uncommon in chronic diseases, especially in epilepsy. Suicide is an important cause of death in epilepsy, and is usually underestimated. Persons with epilepsy have higher risk for suicide than healthy controls. It appears that some epilepsy types have stronger tendencies for suicide, in particular temporal lobe epilepsy. The suicidal risk factors in persons with epilepsy include difficult to treat epilepsies, onset of epilepsy at an earlier age, and comorbid depression.This clinical evidence is mostly based on observational studies in which we found an increased risk of suicidal ideation, suicidal attempts, and completed suicides in persons with epilepsy. However, we lack prospective and longitudinal studies on suicide in epilepsy. In this chapter we will examine recent research in neurobiological mechanisms between suicidality and epilepsy, and comorbid depression.


Subject(s)
Epilepsy , Suicide , Anticonvulsants/adverse effects , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/epidemiology , Humans , Prospective Studies , Risk Factors , Suicidal Ideation , Suicide/psychology
10.
Front Neurol ; 12: 779113, 2021.
Article in English | MEDLINE | ID: mdl-34867768

ABSTRACT

Subcortical band heterotopia (SBH), also known as double cortex syndrome, is a malformation of cortical development caused by inherited or somatic gene variants. We present a case of a young adult with posterior SBH and electroclinical features of focal neocortical temporal lobe epilepsy. Genomic blood analysis identified a pathogenic somatic mosaicism duplication variant of the PAFAH1B1 gene. Despite bilateral cortical MRI abnormalities, the interictal and ictal EEG findings indicated a focal epileptogenic region in the left posterior temporal region. Chronic responsive cortical neurostimulation across two four-contact depth electrodes placed 5 mm on either side of the maximal interictal spiking identified during intraoperative electrocorticography resulted in a consistent 28% reduction in duration of electrographic seizures and as well as constricted propagation. Although electrographic seizures continued, the family reported no clinical seizures and a marked improvement in resistant behaviors. This observation supports that focal neocortical neuromodulation can control clinical seizures of consistently localized origin despite genetic etiology, bilateral structural brain abnormalities, and continuation of non-propagating electrographic seizures. We propose that a secondary somatic mutation may be the cause of the focal neocortical temporal lobe epilepsy.

11.
Sci Total Environ ; 798: 149306, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34340072

ABSTRACT

Human activities have disturbed global phosphorus (P) cycling by introducing substantial amounts of P to natural ecosystems. Although natural P gradients and fertilization studies have found that plant community traits are closely related to P availability, it remains unclear how increased P supply affects plant growth and diversity in P-deficient tropical forests. We used a decadal P-addition experiment (2007-2017) to study the effects of increased P input on plant growth and diversity in understory layer in tropical forests. We monitored the dynamics of seedling growth, survival rate, and diversity of understory plants throughout the fertilization period under control and P addition at 15 g P m-2 yr-1. To identify the drivers of responses, P concentration, photosynthesis rate and nonstructural carbon were analyzed. Results showed that long-term P addition significantly increased P concentrations both in soil pools and plant tissues. However, P addition did not increase the light-saturated photosynthesis rate or growth rate of the understory plants. Furthermore, P addition significantly decreased the survival rate of seedlings and reduced the species richness and density of understory plants. The negative effects of P addition may be attributed to an increased carbon cost due to the tissue maintenance of plants with higher P concentrations. These findings indicate that increased P supply alone is not necessary to benefit the growth of plants in ecosystems with low P availability, and P inputs can inhibit understory plants and may alter community composition. Therefore, we appeal to a need for caution when inputting P to tropical forests ecosystems.


Subject(s)
Ecosystem , Phosphorus , Forests , Humans , Plants , Soil , Trees , Tropical Climate
12.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33846252

ABSTRACT

Terrestrial ecosystem carbon (C) sequestration plays an important role in ameliorating global climate change. While tropical forests exert a disproportionately large influence on global C cycling, there remains an open question on changes in below-ground soil C stocks with global increases in nitrogen (N) deposition, because N supply often does not constrain the growth of tropical forests. We quantified soil C sequestration through more than a decade of continuous N addition experiment in an N-rich primary tropical forest. Results showed that long-term N additions increased soil C stocks by 7 to 21%, mainly arising from decreased C output fluxes and physical protection mechanisms without changes in the chemical composition of organic matter. A meta-analysis further verified that soil C sequestration induced by excess N inputs is a general phenomenon in tropical forests. Notably, soil N sequestration can keep pace with soil C, based on consistent C/N ratios under N additions. These findings provide empirical evidence that below-ground C sequestration can be stimulated in mature tropical forests under excess N deposition, which has important implications for predicting future terrestrial sinks for both elevated anthropogenic CO2 and N deposition. We further developed a conceptual model hypothesis depicting how soil C sequestration happens under chronic N deposition in N-limited and N-rich ecosystems, suggesting a direction to incorporate N deposition and N cycling into terrestrial C cycle models to improve the predictability on C sink strength as enhanced N deposition spreads from temperate into tropical systems.


Subject(s)
Carbon Sequestration/physiology , Nitrogen/metabolism , Soil/chemistry , Carbon/chemistry , Climate Change , Ecosystem , Forests , Nitrogen/chemistry , Rainforest , Soil Microbiology , Trees/growth & development , Tropical Climate
13.
Curr Opin Neurol ; 34(2): 206-212, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33664206

ABSTRACT

PURPOSE OF REVIEW: The serotonergic system is implicated in multiple aspects of epilepsy, including seizure susceptibility, sudden unexpected death in epilepsy (SUDEP), and comorbid depression. Despite the complexity of serotonin's effects on various neuronal networks, ongoing research provides considerable insight into the role of serotonin in human epilepsy. This review explores the potential roles of serotonergic therapies to improve clinical outcomes in epilepsy. RECENT FINDINGS: In recent decades, research has markedly increased our knowledge of the diverse effects of serotonin on brain function. Animal models of epilepsy have identified the influence of serotonin on seizure threshold in specific brain regions, serotoninergic augmentation's protective effects on terminal apnea and mortality in SUDEP, and mechanisms underlying behavioral improvement in some models of comorbid depression. Human clinical studies are largely consistent with animal data but the translation into definitive treatment decisions has moved less rapidly. SUMMARY: Evidence for serotonergic therapy is promising for improvement in seizure control and prevention of SUDEP. For some epilepsies, such as Dravet syndrome, basic research on serotonin receptor agonists has translated into a positive clinical trial for fenfluramine. The cumulative results of safety and efficacy studies support the routine use of SSRIs for comorbid depression in epilepsy.


Subject(s)
Epilepsy , Sudden Unexpected Death in Epilepsy , Animals , Brain , Death, Sudden , Epilepsy/drug therapy , Epilepsy/epidemiology , Humans , Seizures
14.
Glob Chang Biol ; 27(12): 2780-2792, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33742519

ABSTRACT

China is experiencing a high level of atmospheric nitrogen (N) deposition, which greatly affects the soil carbon (C) dynamics in terrestrial ecosystems. Soil aggregation contributes to the stability of soil structure and to soil C sequestration. Although many studies have reported the effects of N enrichment on bulk soil C dynamics, the underlying mechanisms explaining how soil aggregates respond to N enrichment remain unclear. Here, we used a meta-analysis of data from 76N manipulation experiments in terrestrial ecosystems in China to assess the effects of N enrichment on soil aggregation and its sequestration of C. On average, N enrichment significantly increased the mean weight diameter of soil aggregates by 10%. The proportion of macroaggregates and silt-clay fraction were significantly increased (6%) and decreased (9%) by N enrichment, respectively. A greater response of macroaggregate C (+15%) than of bulk soil C (+5%) to N enrichment was detected across all ecosystems. However, N enrichment had minor effects on microaggregate C and silt-clay C. The magnitude of N enrichment effect on soil aggregation varied with ecosystem type and fertilization regime. Additionally, soil pH declined consistently and was correlated with soil aggregate C. Overall, our meta-analysis suggests that N enrichment promotes particulate organic C accumulation via increasing macroaggregate C and acidifying soils. In contrast, increases in soil aggregation could inhibit microbially mediated breakdown of soil organic matter, causing minimal change in mineral-associated organic C. Our findings highlight that atmospheric N deposition may enhance the formation of soil aggregates and their sequestration of C in terrestrial ecosystems in China.


Subject(s)
Carbon , Soil , Carbon/analysis , China , Ecosystem , Nitrogen/analysis
15.
J Environ Qual ; 49(4): 961-972, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33016495

ABSTRACT

The effects of enhanced acid deposition from the atmosphere, and associated elevated inputs of N, are widely evident, especially for forests where excess N has led to a variety of deleterious effects. These include declines in biodiversity, a response that will likely require considerable time for recovery. The purpose of this study was to determine responses of plant nutrient availability in surface mineral soil to 25 yr of experimental acidification and N addition in a central Appalachian hardwood forest ecosystem. We hypothesized that chronic additions of (NH4 )2 SO4 will increase mineral N, decrease soil pH, P, and base cations, increase micronutrients (Mn2+ and Fe2+ ), and increase levels of Al3+ . Results supported these predictions, although Mn2+ did not vary significantly. Earlier work on these plots found no response of any of the extractable nutrients to 3 yr of treatment, yet after 25 yr, our results suggest that impacts are apparent in the top 5 cm of the A horizon. We surmise that impacts in these soils may have lagged behind the onset of acidification treatments or that several years of treatment were required to overcome preexisting differences in soil ions. Generally, current findings confirm that (NH4 )2 SO4 treatments have lowered the pH, enhanced levels of exchangeable Al3+ , and increased stream-water exports of NO3 - and base cations-a process that further acidifies soil. The combination of these changes in surface soils, with their high proportion of fine roots, may contribute to the reduced growth and competitiveness of some hardwood species at the acidified site.


Subject(s)
Ecosystem , Soil , Appalachian Region , Forests , Hydrogen-Ion Concentration
16.
Ann Neurol ; 86(4): 552-560, 2019 10.
Article in English | MEDLINE | ID: mdl-31359460

ABSTRACT

OBJECTIVE: Limited evidence is available to guide treatment of depression for persons with epilepsy. We evaluated the comparative effectiveness of sertraline and cognitive behavior therapy (CBT) for depression, quality of life, seizures, and adverse treatment effects. METHODS: We randomly assigned 140 adult outpatients with epilepsy and current major depressive disorder to sertraline or weekly CBT for 16 weeks. The primary outcome was remission from depression based on the Mini International Neuropsychiatric Interview (MINI). Secondary outcomes included the Quality of Life in Epilepsy Inventory-89 (QOLIE-89) seizure rates, the Adverse Events Profile (AEP), the Beck Depression Inventory, and MINI Suicide Risk Module. RESULTS: In the intention-to-treat analysis, 38 (52.8%; 95% confidence interval [CI] = ±12) of the 72 subjects assigned to sertraline and 41 (60.3%; 95% CI = ±11.6) of the 68 subjects in the CBT group achieved remission; the lower bound of efficacy for both groups was greater than our historical placebo control group upper bound of 33.7%. Difference in time to remission between groups was 2.8 days (95% CI = ±0.43; p = 0.79). The percent improvement of mean QOLIE-89 scores was significant for both the CBT (25.7%; p < 0.001) and sertraline (28.3%; p < 0.001) groups. The difference in occurrence of generalized tonic-clonic seizures between groups was 0.3% (95% CI = ±8.6; p = 0.95). Suicide risk at final assessment was associated with persistent depression (p < 0.0001) but not seizures or sertraline. INTERPRETATION: Depression remitted in just over one-half of subjects following sertraline or CBT. Despite the complex psychosocial disability associated with epilepsy, improving depression benefits quality of life. Serotonin reuptake inhibition does not appear to increase seizures or suicidality in persons with epilepsy. ANN NEUROL 2019;86:552-560.


Subject(s)
Cognitive Behavioral Therapy , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/therapy , Epilepsy/drug therapy , Epilepsy/therapy , Sertraline/therapeutic use , Adult , Aged , Depressive Disorder, Major/complications , Epilepsy/complications , Female , Humans , Male , Middle Aged , Selective Serotonin Reuptake Inhibitors/therapeutic use , Treatment Outcome , Young Adult
17.
Nat Plants ; 5(7): 697-705, 2019 07.
Article in English | MEDLINE | ID: mdl-31263243

ABSTRACT

Atmospheric nitrogen and sulfur pollution increased over much of the United States during the twentieth century from fossil fuel combustion and industrial agriculture. Despite recent declines, nitrogen and sulfur deposition continue to affect many plant communities in the United States, although which species are at risk remains uncertain. We used species composition data from >14,000 survey sites across the contiguous United States to evaluate the association between nitrogen and sulfur deposition and the probability of occurrence for 348 herbaceous species. We found that the probability of occurrence for 70% of species was negatively associated with nitrogen or sulfur deposition somewhere in the contiguous United States (56% for N, 51% for S). Of the species, 15% and 51% potentially decreased at all nitrogen and sulfur deposition rates, respectively, suggesting thresholds below the minimum deposition they receive. Although more species potentially increased than decreased with nitrogen deposition, increasers tended to be introduced and decreasers tended to be higher-value native species. More vulnerable species tended to be shorter with lower tissue nitrogen and magnesium. These relationships constitute predictive equations to estimate critical loads. These results demonstrate that many herbaceous species may be at risk from atmospheric deposition and can inform improvements to air quality policies in the United States and globally.


Subject(s)
Nitrogen/chemistry , Plants/chemistry , Sulfur/chemistry , Air Pollutants/chemistry , Air Pollutants/metabolism , Air Pollution , Environmental Monitoring , Kinetics , Nitrogen/metabolism , Plants/classification , Plants/metabolism , Sulfur/metabolism , United States
18.
Environ Pollut ; 244: 560-574, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30384062

ABSTRACT

Historical increases in emissions and atmospheric deposition of oxidized and reduced nitrogen (N) provided the impetus for extensive, global-scale research investigating the effects of excess N in terrestrial and aquatic ecosystems, with several regions within the Eastern Deciduous Forest of the United States found to be susceptible to negative effects of excess N. The Clean Air Act and associated rules have led to decreases in emissions and deposition of oxidized N, especially in eastern U.S., representing a research challenge and opportunity for ecosystem ecologists and biogeochemists. The purpose of this paper is to predict changes in the structure and function of North American forest ecosystems in a future of decreased N deposition. Hysteresis is a property of a system wherein output is not a strict function of corresponding input, incorporating lag, delay, or history dependence, particularly when the response to decreasing input is different from the response to increasing input. We suggest a conceptual hysteretic model predicting varying lag times in recovery of soil acidification, plant biodiversity, soil microbial communities, forest carbon (C) and N cycling, and surface water chemistry toward pre-N impact conditions. Nearly all of these can potentially respond strongly to reductions in N deposition. Most responses are expected to show some degree of hysteresis, with the greatest delays in response occurring in processes most tightly linked to "slow pools" of N in wood and soil organic matter. Because experimental studies of declines in N loads in forests of North America are lacking and because of the expected hysteresis, it is difficult to generalize from experimental results to patterns expected from declining N deposition. These will likely be long-term phenomena, difficult to distinguish from other, concurrent environmental changes, including elevated atmospheric CO2, climate change, reductions in acidity, invasions of new species, and long-term vegetation responses to past disturbance.


Subject(s)
Atmosphere/analysis , Carbon Cycle/physiology , Carbon/analysis , Climate Change , Nitrogen Cycle/physiology , Nitrogen/analysis , Biodiversity , Carbon Dioxide/metabolism , Forests , Models, Theoretical , Plant Physiological Phenomena , Plants , Soil/chemistry , Trees/physiology , United States , Water/chemistry
20.
Environ Pollut ; 242(Pt B): 1787-1799, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30115529

ABSTRACT

Understorey communities can dominate forest plant diversity and strongly affect forest ecosystem structure and function. Understoreys often respond sensitively but inconsistently to drivers of ecological change, including nitrogen (N) deposition. Nitrogen deposition effects, reflected in the concept of critical loads, vary greatly not only among species and guilds, but also among forest types. Here, we characterize such context dependency as driven by differences in the amounts and forms of deposited N, cumulative deposition, the filtering of N by overstoreys, and available plant species pools. Nitrogen effects on understorey trajectories can also vary due to differences in surrounding landscape conditions; ambient browsing pressure; soils and geology; other environmental factors controlling plant growth; and, historical and current disturbance/management regimes. The number of these factors and their potentially complex interactions complicate our efforts to make simple predictions about how N deposition affects forest understoreys. We review the literature to examine evidence for context dependency in N deposition effects on forest understoreys. We also use data from 1814 European temperate forest plots to test the ability of multi-level models to characterize context-dependent understorey responses across sites that differ in levels of N deposition, community composition, local conditions and management history. This analysis demonstrated that historical management, and plot location on light and pH-fertility gradients, significantly affect how understorey communities respond to N deposition. We conclude that species' and communities' responses to N deposition, and thus the determination of critical loads, vary greatly depending on environmental contexts. This complicates our efforts to predict how N deposition will affect forest understoreys and thus how best to conserve and restore understorey biodiversity. To reduce uncertainty and incorporate context dependency in critical load setting, we should assemble data on underlying environmental conditions, conduct globally distributed field experiments, and analyse a wider range of habitat types.


Subject(s)
Forests , Nitrogen/analysis , Biodiversity , Ecosystem , Nitrogen Cycle , Plants , Soil , Trees/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL