Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ecology ; 100(7): e02723, 2019 07.
Article in English | MEDLINE | ID: mdl-30973962

ABSTRACT

Detrital-based trophic cascades are often considered weak or absent in tropical stream ecosystems because of the prevalence of omnivorous macroconsumers and the dearth of leaf-shredding insects. In this study, we isolate top-down effects of three macroconsumer species on detrital processing in headwater streams draining Trinidad's northern mountains. We separated effects of different macroconsumers by experimentally manipulating their temporal access to isolated benthic habitat over the diel cycle. We found no evidence that omnivorous macroconsumers, including a freshwater crab (Eudaniela garmani) and guppy (Poecilia reticulata), increased leaf decomposition via consumption. By contrast, above a waterfall excluding guppies, the insectivorous killifish, Anablepsoides hartii, reduced the biomass of the leaf-shredding insect Phylloicus hansoni 4-fold, which consequently reduced leaf decomposition rates 1.6-fold. This detrital cascade did not occur below the barrier waterfall, where omnivorous guppies join the assemblage and reduce killifish densities; here killifish had no significant effects on Phylloicus or decomposition rates. These patterns of detrital processing were also observed in upstream-downstream comparisons in a landscape study across paired reaches of six streams. Above waterfalls, where killifish were present, but guppies absent, leaf decomposition rates and Phylloicus biomass were 2.5- and ~35-fold lower, respectively, compared to measurements below waterfalls. Moreover, the strength of top-down control by killifish is reflected by the 20- and 5-fold reductions in variability (±SE) surrounding mean Phylloicus biomass and leaf decomposition rates in upstream relative to downstream reaches where no top-down control was detected. Findings show a clear, detrital-based trophic cascade among killifish, a leaf-shredding insect, and leaf decomposition rates. Results also show how omnivorous guppies disrupt this cascade by depressing killifish densities, thereby releasing invertebrate shredders from predation, and significantly increasing decomposition rates. Moreover, this combination of direct and indirect trophic interactions drives patterns in decomposition rates in stream networks at a landscape scale, resulting in significantly lower rates of decomposition above vs. below barrier waterfalls. Our findings reveal that omnivory can result in significant indirect effects on a key ecosystem process, illustrating the importance of these hidden trophic pathways in detrital-based systems and suggesting that resource control in tropical systems may be even more complex than previously envisioned.


Subject(s)
Ecosystem , Poecilia , Animals , Biomass , Plant Leaves , Predatory Behavior , Trinidad and Tobago
2.
Parasitology ; 143(12): 1605-14, 2016 10.
Article in English | MEDLINE | ID: mdl-27585480

ABSTRACT

The presence of introduced hosts can increase or decrease infections of co-introduced parasites in native species of conservation concern. In this study, we compared parasite abundance, intensity, and prevalence between native Awaous stamineus and introduced poeciliid fishes by a co-introduced nematode parasite (Camallanus cotti) in 42 watersheds across the Hawaiian Islands. We found that parasite abundance, intensity and prevalence were greater in native than introduced hosts. Parasite abundance, intensity and prevalence within A. stamineus varied between years, which largely reflected a transient spike in infection in three remote watersheds on Molokai. At each site we measured host factors (length, density of native host, density of introduced host) and environmental factors (per cent agricultural and urban land use, water chemistry, watershed area and precipitation) hypothesized to influence C. cotti abundance, intensity and prevalence. Factors associated with parasitism differed between native and introduced hosts. Notably, parasitism of native hosts was higher in streams with lower water quality, whereas parasitism of introduced hosts was lower in streams with lower water quality. We also found that parasite burdens were lower in both native and introduced hosts when coincident. Evidence of a mutual dilution effect indicates that introduced hosts can ameliorate parasitism of native fishes by co-introduced parasites, which raises questions about the value of remediation actions, such as the removal of introduced hosts, in stemming the rise of infectious disease in species of conservation concern.


Subject(s)
Fish Diseases/epidemiology , Fish Diseases/parasitology , Fishes/parasitology , Nematode Infections/veterinary , Parasite Load , Animals , Hawaii/epidemiology , Nematode Infections/epidemiology , Nematode Infections/parasitology , Prevalence , Rivers
3.
Zootaxa ; 3711: 1-64, 2013.
Article in English | MEDLINE | ID: mdl-25320768

ABSTRACT

Based on historical and museum records and recent extensive collecting we compiled a checklist of 77 fish species reported from the streams of Trinidad and Tobago. A key with photographs is provided to aid in identifications, as well as brief notes on habitat, diet, reproduction, maximum size, local common names and distribution.


Subject(s)
Fishes/anatomy & histology , Fishes/classification , Animals , Fresh Water , Trinidad and Tobago
4.
PLoS One ; 7(6): e38806, 2012.
Article in English | MEDLINE | ID: mdl-22761706

ABSTRACT

Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N.


Subject(s)
Biomass , Conservation of Natural Resources , Ecosystem , Nitrogen Cycle/physiology , Nitrogen/metabolism , Snails/physiology , Animals , Rivers , Trinidad and Tobago
5.
PLoS One ; 7(3): e32713, 2012.
Article in English | MEDLINE | ID: mdl-22412911

ABSTRACT

The elemental composition of animals, or their organismal stoichiometry, is thought to constrain their contribution to nutrient recycling, their interactions with other animals, and their demographic rates. Factors that affect organismal stoichiometry are generally poorly understood, but likely reflect elemental investments in morphological features and life history traits, acting in concert with the environmental availability of elements. We assessed the relative contribution of organismal traits and environmental variability to the stoichiometry of an insectivorous Neotropical stream fish, Rivulus hartii. We characterized the influence of body size, life history phenotype, stage of maturity, and environmental variability on organismal stoichiometry in 6 streams that differ in a broad suite of environmental variables. The elemental composition of R. hartii was variable, and overlapped with the wide range of elemental composition documented across freshwater fish taxa. Average %P composition was ∼3.2%(±0.6), average %N∼10.7%(±0.9), and average %C∼41.7%(±3.1). Streams were the strongest predictor of organismal stoichiometry, and explained up to 18% of the overall variance. This effect appeared to be largely explained by variability in quality of basal resources such as epilithon N:P and benthic organic matter C:N, along with variability in invertebrate standing stocks, an important food source for R. hartii. Organismal traits were weak predictors of organismal stoichiometry in this species, explaining when combined up to 7% of the overall variance in stoichiometry. Body size was significantly and positively correlated with %P, and negatively with N:P, and C:P, and life history phenotype was significantly correlated with %C, %P, C:P and C:N. Our study suggests that spatial variability in elemental availability is more strongly correlated with organismal stoichiometry than organismal traits, and suggests that the stoichiometry of carnivores may not be completely buffered from environmental variability. We discuss the relevance of these findings to ecological stoichiometry theory.


Subject(s)
Environment , Fishes/physiology , Animals , Body Size , Ecosystem , Fresh Water
6.
Mol Ecol ; 20(3): 601-18, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21199028

ABSTRACT

Diversification of freshwater fishes on islands is considered unlikely because the traits that enable successful colonization-specifically, broad salinity tolerances and the potential for oceanic dispersal-may also constrain post-colonization genetic differentiation. Some secondary freshwater fish, however, exhibit pronounced genetic differentiation and geographic structure on islands, whereas others do not. It is unclear what conditions give rise to contrasting patterns of differentiation because few comparative reconstructions of population history have been carried out for insular freshwater fishes. In this study, we examined the phylogeography of Hart's killifish (Rivulus hartii) across Trinidad, with reference to neighboring islands and northern South America, to test hypotheses of colonization and differentiation derived from comparable work on co-occurring guppies (Poecilia reticulata). Geographic patterns of mitochondrial DNA haplotype variation and microsatellite genotype variation provide evidence of genetic differentiation of R. hartii among islands and across Trinidad. Our findings are largely consistent with patterns of geographically structured ancestry and admixture found in Trinidadian guppies, which suggests that both species share a history of colonization and differentiation and that post-colonization diversification may be more common among members of insular freshwater fish assemblages than has been previously thought.


Subject(s)
Cyprinodontiformes/genetics , DNA, Mitochondrial/genetics , Genetic Speciation , Animals , Cyprinodontiformes/classification , DNA, Mitochondrial/chemistry , Fresh Water , Genetic Variation , Haplotypes , Microsatellite Repeats/genetics , Phylogeography , Poecilia/classification , Poecilia/genetics , Population Dynamics , Trinidad and Tobago , West Indies
7.
Ecology ; 89(7): 1961-71, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18705382

ABSTRACT

Immigration, emigration, migration, and redistribution describe processes that involve movement of individuals. These movements are an essential part of contemporary ecological models, and understanding how movement is affected by biotic and abiotic factors is important for effectively modeling ecological processes that depend on movement. We asked how phenotypic heterogeneity (body size) and environmental heterogeneity (food resource level) affect the movement behavior of an aquatic snail (Tarebia granifera), and whether including these phenotypic and environmental effects improves advection-diffusion models of movement. We postulated various elaborations of the basic advection diffusion model as a priori working hypotheses. To test our hypotheses we measured individual snail movements in experimental streams at high- and low-food resource treatments. Using these experimental movement data, we examined the dependency of model selection on resource level and body size using Akaike's Information Criterion (AIC). At low resources, large individuals moved faster than small individuals, producing a platykurtic movement distribution; including size dependency in the model improved model performance. In stark contrast, at high resources, individuals moved upstream together as a wave, and body size differences largely disappeared. The model selection exercise indicated that population heterogeneity is best described by the advection component of movement for this species, because the top-ranked model included size dependency in advection, but not diffusion. Also, all probable models included resource dependency. Thus population and environmental heterogeneities both influence individual movement behaviors and the population-level distribution kernels, and their interaction may drive variation in movement behaviors in terms of both advection rates and diffusion rates. A behaviorally informed modeling framework will integrate the sentient response of individuals in terms of movement and enhance our ability to accurately model ecological processes that depend on animal movement.


Subject(s)
Ecosystem , Feeding Behavior/physiology , Snails/physiology , Animals , Body Size , Conservation of Natural Resources , Models, Biological , Rivers
8.
Am Nat ; 161(3): 441-58, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12699223

ABSTRACT

We develop a general theory of organism movement in heterogeneous populations that can explain the leptokurtic movement distributions commonly measured in nature. We describe population heterogeneity in a state-structured framework, employing advection-diffusion as the fundamental movement process of individuals occupying different movement states. Our general analysis shows that population heterogeneity in movement behavior can be defined as the existence of different movement states and among-individual variability in the time individuals spend in these states. A presentation of moment-based metrics of movement illustrates the role of these attributes in general dispersal processes. We also present a special case of the general theory: a model population composed of individuals occupying one of two movement states with linear transitions, or exchange, between the two states. This two-state "exchange model" can be viewed as a correlated random walk and provides a generalization of the telegraph equation. By exploiting the main result of our general analysis, we characterize the exchange model by deriving moment-based metrics of its movement process and identifying an analytical representation of the model's time-dependent solution. Our results provide general and specific theoretical explanations for empirical patterns in organism movement; the results also provide conceptual and analytical bases for extending diffusion-based dispersal theory in several directions, thereby facilitating mechanistic links between individual behavior and spatial population dynamics.


Subject(s)
Animal Migration , Models, Biological , Animals , Diffusion , Movement , Population Dynamics
9.
Am Nat ; 160(2): 158-72, 2002 Aug.
Article in English | MEDLINE | ID: mdl-18707483

ABSTRACT

Many empirical studies support the premise that animals consider both the benefits of feeding and the cost of mortality when making behavioral decisions, and many theoretical studies predict animal behavior in the presence of a feeding-mortality trade-off. However, empirical work is lacking in studies that quantitatively assess alternative models. Using data from two sets of behavioral experiments examining stream minnows (bluehead chubs) foraging in the presence of sunfish predators (green sunfish), we assess, via statistical model fitting, the utility of four basic optimization models of foraging behavior. Our analysis of feeding and mortality of the minnows indicates that mortality is incurred so as to feed above maintenance requirements, that feeding rate is suppressed in response to the presence of predators, and that the balance of feeding against mortality can be estimated using a life-history parameter theta, interpreted theoretically as the marginal rate of substitution of mortality rate for growth rate. Our results indicate that both body size and age are probably involved in determining the value of theta, and we suggest that future studies should focus on estimating and understanding this parameter.

10.
Ecology ; 68(6): 1856-1862, 1987 Dec.
Article in English | MEDLINE | ID: mdl-29357169

ABSTRACT

Animals commonly choose among habitats that differ both in foraging return and mortality hazard. However, no experimental study has attempted to predict the level of increase in resources, or the decrease in mortality hazard, which will induce a forager to shift from a safer to a more hazardous (but richer) foraging area. Here we present and test a model that specifies the choice of foraging areas ("habitats") that would minimize total mortality risk while allowing collection of some arbitrary net energy gain. We tested the model with juvenile creek chubs (Semotilus atromaculatus) in an experimental field stream in which the foragers could utilize a foodless refuge and choose between two foraging areas that differed in experimentally manipulated resource densities (Tubifex spp. worms in sediments) and mortality hazard (adult creek chubs). For the case tested, the model specified a simple rule: "use the refuge plus the site with the lowest ratio of mortality rate (µ) to gross foraging rat (f)," i.e., "minimize µ./f." Independent prior measurements of mortality hazard (as a function of predator density) and gross foraging rate (as a function of resource density) allowed us to predict the resource level in the more hazardous foraging site that should induce a shift from the safer to the more hazardous site. The chubs' preferences in subsequent choice experiments agreed well with the theoretical predictions. The "minimize µ/f" rule (deaths per unit energy), perhaps in modified form, provides a simple alternative to the "maximize f" (energy per unit time) criterion that applies to long-term rate maximization when predation hazard does not differ among choices.

SELECTION OF CITATIONS
SEARCH DETAIL