Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Front Oncol ; 14: 1324057, 2024.
Article in English | MEDLINE | ID: mdl-38590653

ABSTRACT

Accurate diagnoses are crucial in determining the most effective treatment across different cancers. In challenging cases, morphology-based traditional pathology methods have important limitations, while molecular profiling can provide valuable information to guide clinical decisions. We present a 35-year female with lung cancer with choriocarcinoma features. Her disease involved the right lower lung, brain, and thoracic lymph nodes. The pathology from brain metastasis was reported as "metastatic choriocarcinoma" (a germ cell tumor) by local pathologists. She initiated carboplatin and etoposide, a regimen for choriocarcinoma. Subsequently, her case was assessed by pathologists from an academic cancer center, who gave the diagnosis of "adenocarcinoma with aberrant expression of ß-hCG" and finally pathologists at our hospital, who gave the diagnosis of "poorly differentiated carcinoma with choriocarcinoma features". Genomic profiling detected a KRAS G13R mutation and transcriptomics profiling was suggestive of lung origin. The patient was treated with carboplatin/paclitaxel/ipilimumab/nivolumab followed by consolidation radiation therapy. She had no evidence of progression to date, 16 months after the initial presentation. The molecular profiling could facilitate diagnosing of challenging cancer cases. In addition, chemoimmunotherapy and local consolidation radiation therapy may provide promising therapeutic options for patients with lung cancer exhibiting choriocarcinoma features.

2.
Prog Retin Eye Res ; 55: 32-51, 2016 11.
Article in English | MEDLINE | ID: mdl-27352937

ABSTRACT

The rod cell has an extraordinarily specialized structure that allows it to carry out its unique function of detecting individual photons of light. Both the structural features of the rod and the metabolic processes required for highly amplified light detection seem to have rendered the rod especially sensitive to structural and metabolic defects, so that a large number of gene defects are primarily associated with rod cell death and give rise to blinding retinal dystrophies. The structures of the rod, especially those of the sensory cilium known as the outer segment, have been the subject of structural, biochemical, and genetic analysis for many years, but the molecular bases for rod morphogenesis and for cell death in rod dystrophies are still poorly understood. Recent developments in imaging technology, such as cryo-electron tomography and super-resolution fluorescence microscopy, in gene sequencing technology, and in gene editing technology are rapidly leading to new breakthroughs in our understanding of these questions. A summary is presented of our current understanding of selected aspects of these questions, highlighting areas of uncertainty and contention as well as recent discoveries that provide new insights. Examples of structural data from emerging imaging technologies are presented.


Subject(s)
Membrane Proteins/metabolism , Morphogenesis , Retinal Diseases/diagnosis , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Cryoelectron Microscopy/methods , Humans , Retinal Diseases/metabolism
3.
Methods Mol Biol ; 1271: 267-92, 2015.
Article in English | MEDLINE | ID: mdl-25697530

ABSTRACT

The connecting cilium of the rod photoreceptor is a tubular structure that bridges two adjacent cellular compartments, the inner segment, the major site of biosynthesis and energy metabolism, and the outer segment, a highly specialized ciliary structure responsible for phototransduction. The connecting cilium allows for active processes of protein sorting and transport to occur between them. Mutations affecting the cargo, their transporters, and the structural components of the primary cilium and basal body lead to aberrant trafficking and photoreceptor cell death. Understanding the overall design of the cilium, its architectural organization, and the function of varied protein complexes within the structural hierarchy of the cilium requires techniques for visualizing their native three-dimensional structures at high magnification. Here we describe methods for isolating retinas from mice, purifying fragments of rod cells that include much of the inner segment and the rod photoreceptor cilia, vitrifying the cell fragments, and determining their structures by cryo-electron tomography.


Subject(s)
Cilia/metabolism , Cryoelectron Microscopy/methods , Retina/cytology , Animals , Cilia/ultrastructure , Mice , Retina/ultrastructure , Retinal Rod Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/ultrastructure , Rod Cell Outer Segment/metabolism
4.
Front Neuroanat ; 8: 130, 2014.
Article in English | MEDLINE | ID: mdl-25429262

ABSTRACT

Comprising 10(11) neurons with 10(14) synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement.

5.
Cell ; 151(5): 1029-41, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23178122

ABSTRACT

Defects in primary cilia lead to devastating disease because of their roles in sensation and developmental signaling but much is unknown about ciliary structure and mechanisms of their formation and maintenance. We used cryo-electron tomography to obtain 3D maps of the connecting cilium and adjacent cellular structures of a modified primary cilium, the rod outer segment, from wild-type and genetically defective mice. The results reveal the molecular architecture of the cilium and provide insights into protein functions. They suggest that the ciliary rootlet is involved in cellular transport and stabilizes the axoneme. A defect in the BBSome membrane coat caused defects in vesicle targeting near the base of the cilium. Loss of the proteins encoded by the Cngb1 gene disrupted links between the disk and plasma membranes. The structures of the outer segment membranes support a model for disk morphogenesis in which basal disks are enveloped by the plasma membrane.


Subject(s)
Cilia/ultrastructure , Retinal Diseases/pathology , Rod Cell Outer Segment/ultrastructure , Animals , Cell Membrane/metabolism , Cilia/chemistry , Cyclic Nucleotide-Gated Cation Channels/metabolism , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Eye Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Retina/chemistry , Retina/metabolism , Rod Cell Outer Segment/chemistry , Rod Cell Outer Segment/metabolism , Transport Vesicles/metabolism
6.
Vision Res ; 51(23-24): 2440-52, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-22037305

ABSTRACT

In order to identify candidate cation channels important for retinal physiology, 28 TRP channel genes were surveyed for expression in the mouse retina. Transcripts for all TRP channels were detected by RT-PCR and sequencing. Northern blotting revealed that mRNAs for 12 TRP channel genes are enriched in the retina. The strongest signals were observed for TRPC1, TRPC3, TRPM1, TRPM3, and TRPML1, and clear signals were obtained for TRPC4, TRPM7, TRPP2, TRPV2, and TRPV4. In situ hybridization and immunofluorescence revealed widespread expression throughout multiple retinal layers for TRPC1, TRPC3, TRPC4, TRPML1, PKD1, and TRPP2. Striking localization of enhanced mRNA expression was observed for TRPC1 in the photoreceptor inner segment layer, for TRPM1 in the inner nuclear layer (INL), for TRPM3 in the INL, and for TRPML1 in the outer plexiform and nuclear layers. Strong immunofluorescence signal in cone outer segments was observed for TRPM7 and TRPP2. TRPC5 immunostaining was largely confined to INL cells immediately adjacent to the inner plexiform layer. TRPV2 antibodies stained photoreceptor axons in the outer plexiform layer. Expression of TRPM1 splice variants was strong in the ciliary body, whereas TRPM3 was strongly expressed in the retinal pigmented epithelium.


Subject(s)
Gene Expression Profiling/methods , Retina/metabolism , Transient Receptor Potential Channels/genetics , Animals , Blotting, Northern , Mice , Mice, Inbred C57BL , Polymerase Chain Reaction/methods , RNA, Messenger/metabolism , Retinal Pigment Epithelium/metabolism , Transient Receptor Potential Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL