Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Pharmaceutics ; 16(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38675112

ABSTRACT

Cationic dendritic amphiphiles were prepared through the linkage of interesting hydrophobic molecules such as cholesterol or vitamin E to the focal point of carbosilane dendrons. These new dendritic systems self-assembled in saline, producing micellar aggregates with hydrodynamic diameters ranging from 6.5 to 9.2 nm, and critical micelle concentrations of approximately 5 and 10 µM for second- and third-generation systems, respectively. The assemblies were able to encapsulate drugs of different charges (anionic, neutral, and cationic). Surprisingly, a 92% encapsulation efficiency for diclofenac was achieved in micelles prepared from second-generation dendrons. Toxicity measurements on peripheral blood mononuclear cells indicated different behavior depending on the generation, corresponding to the micellar regime. In contrast to the third-generation system, the second-generation system was non-toxic up to 20 µM, opening a window for its use in a micellar regimen, thereby operating as a drug delivery system for different biomedical applications.

2.
Arthritis Res Ther ; 26(1): 73, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509602

ABSTRACT

BACKGROUND: Pain from osteoarthritis (OA) is one of the top causes of disability worldwide, but effective treatment is lacking. Nociceptive factors are released by activated synovial macrophages in OA, but depletion of synovial macrophages paradoxically worsens inflammation and tissue damage in previous studies. Rather than depleting macrophages, we hypothesized that inhibiting macrophage activation may improve pain without increasing tissue damage. We aimed to identify key mechanisms mediating synovial macrophage activation and test the role of STAT signaling in macrophages on pain outcomes in experimental knee OA. METHODS: We induced experimental knee OA in rats via knee destabilization surgery, and performed RNA sequencing analysis on sorted synovial tissue macrophages to identify macrophage activation mechanisms. Liposomes laden with STAT1 or STAT6 inhibitors, vehicle (control), or clodronate (depletion control) were delivered selectively to synovial macrophages via serial intra-articular injections up to 12 weeks after OA induction. Treatment effects on knee and hindpaw mechanical pain sensitivity were measured during OA development, along with synovitis, cartilage damage, and synovial macrophage infiltration using histopathology and immunofluorescence. Lastly, crosstalk between drug-treated synovial tissue and articular chondrocytes was assessed in co-culture. RESULTS: The majority of pathways identified by transcriptomic analyses in OA synovial macrophages involve STAT signaling. As expected, macrophage depletion reduced pain, but increased synovial tissue fibrosis and vascularization. In contrast, STAT6 inhibition in macrophages led to marked, sustained improvements in mechanical pain sensitivity and synovial inflammation without worsening synovial or cartilage pathology. During co-culture, STAT6 inhibitor-treated synovial tissue had minimal effects on healthy chondrocyte gene expression, whereas STAT1 inhibitor-treated synovium induced changes in numerous cartilage turnover-related genes. CONCLUSION: These results suggest that STAT signaling is a major mediator of synovial macrophage activation in experimental knee OA. STAT6 may be a key mechanism mediating the release of nociceptive factors from macrophages and the development of mechanical pain sensitivity. Whereas therapeutic depletion of macrophages paradoxically increases inflammation and fibrosis, blocking STAT6-mediated synovial macrophage activation may be a novel strategy for OA-pain management without accelerating tissue damage.


Subject(s)
Osteoarthritis, Knee , STAT6 Transcription Factor , Animals , Rats , Fibrosis , Inflammation/pathology , Macrophage Activation , Osteoarthritis, Knee/pathology , Pain/pathology , Synovial Membrane/pathology , STAT6 Transcription Factor/metabolism
3.
Angew Chem Int Ed Engl ; 63(13): e202318881, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38320963

ABSTRACT

Polymer nanodiscs, especially with stimuli-responsive features, represent an unexplored frontier in the nanomaterial landscape. Such 2D nanomaterials are considered highly promising for advanced biomedicine applications. Herein, we designed a rod-coil copolymer architecture based on an amphiphilic, tadpole-like bottlebrush copolymer, which can directly self-assemble into core-shell nanodiscs in an aqueous environment. As the bottlebrush side chains are made of amorphous, UV-responsive poly(ethyl glyoxylate) (PEtG) chains, they can undergo rapid end-to-end self-immolation upon light irradiation. This triggered nanodisc disassembly can be used to boost small molecule release from the nanodisc core, which is further aided by a morphological change from discs to spheres.

4.
Angew Chem Int Ed Engl ; 63(3): e202317063, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38029347

ABSTRACT

Self-immolative polymers (SIPs) are a class of degradable macromolecules that undergo stimuli-triggered head-to-tail depolymerization. However, a general approach to readily end-functionalize SIP precursors for programmed degradation remains elusive, restricting access to complex, functional SIP-based materials. Here we present a "click to self-immolation" strategy based on aroyl azide-capped SIP precursors, enabling the facile construction of diverse SIPs with different trigger units through a Curtius rearrangement and alcohol/thiol-isocyanate "click" reaction. This strategy is also applied to polymer-polymer coupling to access fully depolymerizable block copolymer amphiphiles, even combining different SIP backbones. Our results demonstrate that the depolymerization can be actuated efficiently under physiologically-relevant conditions by the removal of the trigger units and ensuing self-immolation of the p-aminobenzyl carbonate linkage, indicating promise for controlled release applications involving nanoparticles and hydrogels.

5.
J Mater Chem B ; 11(36): 8804-8816, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37668597

ABSTRACT

Osteoarthritis (OA) is a progressive disease, involving the progressive breakdown of cartilage, as well as changes to the synovium and bone. There are currently no disease-modifying treatments available clinically. An increasing understanding of the disease pathophysiology is leading to new potential therapeutics, but improved approaches are needed to deliver these drugs, particularly to cartilage tissue, which is avascular and contains a dense matrix of collagens and negatively charged aggrecan proteoglycans. Cationic delivery vehicles have been shown to effectively penetrate cartilage, but these studies have thus far largely focused on proteins or nanoparticles, and the effects of macromolecular architectures have not yet been explored. Described here is the synthesis of a small library of polycations composed of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) with linear, 4-arm, or 8-arm structures and varying degrees of polymerization (DP) by reversible addition fragmentation chain-transfer (RAFT) polymerization. Uptake and retention of the polycations in bovine articular cartilage was assessed. While all polycations penetrated cartilage, uptake and retention generally increased with DP before decreasing for the highest DP. In addition, uptake and retention were higher for the linear polycations compared to the 4-arm and 8-arm polycations. In general, the polycations were well tolerated by bovine chondrocytes, but the highest DP polycations imparted greater cytotoxicity. Overall, this study reveals that linear polymer architectures may be more favorable for binding to the cartilage matrix and that the DP can be tuned to maximize uptake while minimizing cytotoxicity.


Subject(s)
Cartilage, Articular , Polymers , Animals , Cattle , Biological Transport , Chondrocytes
6.
Biomacromolecules ; 24(11): 4958-4969, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37709729

ABSTRACT

Polymer nanoparticles have generated significant interest as delivery systems for therapeutic cargo. Self-immolative polymers (SIPs) are an interesting category of materials for delivery applications, as the characteristic property of end-to-end depolymerization allows for the disintegration of the delivery system, facilitating a more effective release of the cargo and clearance from the body after use. In this work, nanoparticles based on a pH-responsive polymer poly(ethylene glycol)-b-(2-diisopropyl)amino ethyl methacrylate) and a self-immolative polymer poly[N,N-(diisopropylamino)ethyl glyoxylamide-r-N,N-(dibutylamino)ethyl glyoxylamide] (P(DPAEGAm-r-DBAEGAm)) were developed. Four particles were synthesized based on P(DPAEGAm-r-DBAEGAm) polymers with varied diisopropylamino to dibutylamino ratios of 4:1, 2:1, 2:3, and 0:1, termed 4:1, 2:1, 2:3, and 0:1 PGAm particles. The pH of particle disassembly was tuned from pH 7.0 to pH 5.0 by adjusting the ratio of diisopropylamino to dibutylamino substituents on the pendant tertiary amine. The P(DPAEGAm-r-DBAEGAm) polymers were observed to depolymerize (60-80%) below the particle disassembly pH after ∼2 h, compared to <10% at pH 7.4 and maintained reasonable stability at pH 7.4 (20-50% depolymerization) after 1 week. While all particles exhibited the ability to load a peptide cargo, only the 4:1 PGAm particles had higher endosomal escape efficiency (∼4%) compared to the 2:3 or 0:1 PGAm particles (<1%). The 4:1 PGAm particle is a promising candidate for further optimization as an intracellular drug delivery system with rapid and precisely controlled degradation.


Subject(s)
Nanoparticles , Polymers , Polymers/chemistry , Drug Delivery Systems , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration
7.
JACS Au ; 3(9): 2436-2450, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37772181

ABSTRACT

Over the past couple of decades, polymers that depolymerize end-to-end upon cleavage of their backbone or activation of a terminal functional group, sometimes referred to as "self-immolative" polymers, have been attracting increasing attention. They are of growing interest in the context of enhancing polymer degradability but also in polymer recycling as they allow monomers to be regenerated in a controlled manner under mild conditions. Furthermore, they are highly promising for applications as smart materials due to their ability to provide an amplified response to a specific signal, as a single sensing event is translated into the generation of many small molecules through a cascade of reactions. From a chemistry perspective, end-to-end depolymerization relies on the principles of self-immolative linkers and polymer ceiling temperature (Tc). In this article, we will introduce the key chemical concepts and foundations of the field and then provide our perspective on recent exciting developments. For example, over the past few years, new depolymerizable backbones, including polyacetals, polydisulfides, polyesters, polythioesters, and polyalkenamers, have been developed, while modern approaches to depolymerize conventional backbones such as polymethacrylates have also been introduced. Progress has also been made on the topological evolution of depolymerizable systems, including the introduction of fully depolymerizable block copolymers, hyperbranched polymers, and polymer networks. Furthermore, precision sequence-defined oligomers have been synthesized and studied for data storage and encryption. Finally, our perspectives on future opportunities and challenges in the field will be discussed.

8.
Acta Biomater ; 169: 530-541, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37507034

ABSTRACT

Medical imaging is widely used clinically and in research to understand disease progression and monitor responses to therapies. Vascular imaging enables the study of vascular disease and therapy, but exogenous contrast agents are generally needed to distinguish the vasculature from surrounding soft tissues. Lanthanide-based agents are commonly employed in MRI, but are also of growing interest for micro-CT, as the position of their k-edges allows them to provide enhanced contrast and also to be employed in dual-energy micro-CT, a technique that can distinguish contrast-enhanced blood vessels from tissues such as bone. Small molecule Gd3+ chelates are available, but are excreted too rapidly. At the same time, a lack of rapid clearance from the body for long-circulating agents presents toxicity concerns. To address these challenges, we describe here the use of self-immolative polymers for the development of new degradable chelates that depolymerize completely from end-to-end following the cleavage of a single end-cap from the polymer terminus. We demonstrate that tuning the end-cap allows the rate of depolymerization to be controlled, while tuning the polymer length enables the polymer to exhibit long circulation times in the blood of mice. After successfully providing one hour of blood contrast, depolymerization led to excretion of the resulting small molecule chelates into the bladder. Despite the high doses required for micro-CT, the agents were well tolerated in mice. Thus, these self-immolative polymeric chelates provide a new platform for the development of medical imaging contrast agents. STATEMENT OF SIGNIFICANCE: Vascular imaging is used clinically to diagnose and monitor vascular disease and in research to understand the progression of disease and study responses to new therapies. For techniques such as magnetic resonance imaging and x-ray computed tomography (CT), long circulating contrast agents are needed to differentiate the vasculature from surrounding tissues. However, if these agents are not rapidly excreted from the body, they can lead to toxicity. We present here a new polymeric system that can chelate hundreds of lanthanide ions for imaging contrast and can circulate for one hour in the blood, but then after end-cap cleavage breaks down completely into small molecules for excretion. The successful application of this system in micro-CT in mice is demonstrated.


Subject(s)
Lanthanoid Series Elements , Vascular Diseases , Mice , Animals , Contrast Media/pharmacology , Tomography, X-Ray Computed , Chelating Agents , Polymers
9.
Biomacromolecules ; 24(8): 3629-3637, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37418699

ABSTRACT

Hydrogels are of interest for a wide range of applications from sensors to drug delivery and tissue engineering. Self-immolative polymers, which depolymerize from end-to-end following a single backbone or end-cap cleavage, offer advantages such as amplification of the stimulus-mediated cleavage event through a cascade degradation process. It is also possible to change the active stimulus by changing only a single end-cap or linker unit. However, there are very few examples of self-immolative polymer hydrogels, and the reported examples exhibited relatively poor stability in their nontriggered state or slow degradation after triggering. Described here is the preparation of hydrogels composed of self-immolative poly(ethyl glyoxylate) (PEtG) and poly(ethylene glycol) (PEG). Hydrogels formed from 2 kg/mol 4-arm PEG and 1.2 kg/mol PEtG with a light-responsive linker end-cap had high gel content (90%), an equilibrium water content of 89%, and a compressive modulus of 26 kPa. The hydrogel degradation could be turned on and off repeatedly through alternating cycles of irradiation and dark storage. Similar cycles could also be used to control the release of the anti-inflammatory drug celecoxib. These results demonstrate the potential for self-immolative hydrogels to afford a high degree of control over responses to stimuli in the context of smart materials for a variety of applications.


Subject(s)
Hydrogels , Polyethylene Glycols , Polymers , Thiogalactosides
10.
Adv Healthc Mater ; 12(22): e2202807, 2023 09.
Article in English | MEDLINE | ID: mdl-37053473

ABSTRACT

Infection is a major complication associated with orthopedic implants. It often involves the development of biofilms on metal substrates, which act as barriers to the host's immune system and systemic antibiotic treatment. The current standard of treatment is revision surgery, often involving the delivery of antibiotics through incorporation into bone cements. However, these materials exhibit sub-optimal antibiotic release kinetics and revision surgeries have drawbacks of high cost and recovery time. Herein, a new approach is presented using induction heating of a metal substrate, combined with an antibiotic-loaded poly(ester amide) coating undergoing a glass transition just above physiological temperature to enable thermally triggered antibiotic release. At normal physiological temperature, the coating provides a rifampicin depot for >100 days, while heating of the coating accelerates drug release, with >20% release over a 1-h induction heating cycle. Induction heating or antibiotic-loaded coating alone each reduce Staphylococcus aureus (S. aureus) viability and biofilm formation on Ti, but the combination causes synergistic killing of S. aureus as measured by crystal violet staining, determination of bacterial viability (>99.9% reduction), and fluorescence microscopy of bacteria on surfaces. Overall, these materials provide a promising platform enabling externally triggered antibiotic release to prevent and/or treat bacterial colonization of implants.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Humans , Anti-Bacterial Agents/chemistry , Titanium/pharmacology , Titanium/chemistry , Polymers , Staphylococcus aureus , Heating , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Biofilms , Staphylococcal Infections/drug therapy
11.
ACS Polym Au ; 2(5): 313-323, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36254315

ABSTRACT

Self-immolative polymers are a growing class of degradable polymers that undergo end-to-end depolymerization after the stimuli-responsive cleavage of an end-cap or backbone unit. Their incorporation into amphiphilic block copolymers can lead to functions such as the disintegration of copolymer nanoassemblies when depolymerization is triggered. However, diblock copolymers have not yet been developed where both blocks are self-immolative. Described here is the synthesis, self-assembly, and triggered depolymerization of self-immolative block copolymers with individually triggerable hydrophilic and hydrophobic blocks. Neutral and cationic hydrophilic polyglyxoylamides (PGAm) with acid-responsive end caps were synthesized and coupled to an ultraviolet (UV) light-triggerable poly(ethyl glyoxylate) (PEtG) hydrophobic block. The resulting block copolymers self-assembled to form nanoparticles in aqueous solution, and their depolymerization in response to acid and UV light was studied by techniques including light scattering, NMR spectroscopy, and electron microscopy. Acid led to selective depolymerization of the PGAm blocks, leading to aggregation, while UV light led to selective depolymerization of the PEtG block, leading to disassembly. This self-immolative block copolymer system provides an enhanced level of control over smart copolymer assemblies and their degradation.

12.
Biomater Sci ; 10(10): 2557-2567, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35225988

ABSTRACT

Nucleic acids have immense potential for the treatment and prevention of a wide range of diseases, but delivery vehicles are needed to assist with their entry into cells. Polycations can reversibly complex with nucleic acids via ionic interactions to form polyplexes and transport them into cells, but they are still hindered by the need to balance cytotoxicity and delivery effectiveness. In this work, we describe a new self-immolative polyglyoxylamide (PGAm) platform designed to address these challenges by complexing nucleic acids via multivalent interactions in the polymeric form and releasing them upon depolymerization. Nine PGAms were synthesized and characterized, with different end-caps and variable cationic pendent groups. The PGAms underwent depolymerization under mildly acidic conditions, with rates dependent on their pendent groups and end-caps. They complexed plasmid DNA, forming cationic nanoparticles, and released it upon depolymerization. Cytotoxicity assays of the PGAms and polyplexes in HEK 293T cells showed a decrease in toxicity following depolymerization, and all samples exhibited much lower toxicity than a commercial non-degradable linear polyethyleneimine (jetPEI) transfection agent. Transfection assays revealed that selected PGAms provided similar levels of reporter gene expression to jetPEI in vitro with a PGAm analogue of poly[2-(dimethylamino)ethyl methacrylate] having particularly interesting activity that was dependent on depolymerization, along with low cytotoxicity. Overall, these results indicate that end-to-end depolymerization of self-immolative polymers can provide a new and promising tool for nucleic acid delivery.


Subject(s)
DNA , Nucleic Acids , DNA/metabolism , Gene Transfer Techniques , Plasmids , Polyethyleneimine , Polymers , Transfection
13.
Chem Commun (Camb) ; 57(84): 11072-11075, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34612260

ABSTRACT

Smart hydrogels are of great interest in areas such as drug delivery and sensing. Dendrimer-based hydrogels can exhibit tunable properties due to their structural precision. We prepared hydrogels from self-immolative dendrons. Controlled hydrogel degradation in response to light was demonstrated and the hydrogel properties as a function of dendron generation were compared.

14.
Biomacromolecules ; 22(9): 3892-3900, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34410113

ABSTRACT

Self-immolative polymers have significant potential for applications such as drug or gene delivery. However, to realize this potential, such materials need to be customized to respond to specific variations in biological conditions. In this work, we investigated the design of new star-shaped self-immolative poly(ethyl glyoxylate)s (PEtGs) and their incorporation into responsive nanoparticles. PEtGs are a subclass of stimulus-responsive self-immolative polymers, which can be combined with different stimuli-responsive functionalities. Two different tetrathiol initiators were used for the polymerization in combination with a variety of potential pH-responsive end-caps, yielding a library of star PEtG polymers which were responsive to pH. Characterization of the depolymerization behavior of the polymers showed that the depolymerization rate was controlled by the end caps rather than the architecture of the polymer. A selection of the star polymers were modified with amines to allow introduction of charge-shifting properties. It was shown that pH-responsive nanoparticles could be prepared from these modified polymers and they demonstrated pH-dependent particle disruption. The pH responsiveness of these particles was studied by dynamic light scattering and 1H nuclear magnetic resonance spectroscopy.


Subject(s)
Nanoparticles , Pharmaceutical Preparations , Glyoxylates , Hydrogen-Ion Concentration , Polymerization , Polymers
15.
Sci Rep ; 11(1): 16603, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400681

ABSTRACT

Vascular research is largely performed in rodents with the goal of developing treatments for human disease. Micro-computed tomography (micro-CT) provides non-destructive three-dimensional imaging that can be used to study the vasculature of rodents. However, to distinguish vasculature from other soft tissues, long-circulating contrast agents are required. In this study, we demonstrated that poly(ethylene glycol) (PEG)-coated gadolinium nanoparticles can be used as a vascular contrast agent in micro-CT. The coated particles could be lyophilized and then redispersed in an aqueous solution to achieve 100 mg/mL of gadolinium. After an intravenous injection of the contrast agent into mice, micro-CT scans showed blood pool contrast enhancements of at least 200 HU for 30 min. Imaging and quantitative analysis of gadolinium in tissues showed the presence of contrast agent in clearance organs including the liver and spleen and very low amounts in other organs. In vitro cell culture experiments, subcutaneous injections, and analysis of mouse body weight suggested that the agents exhibited low toxicity. Histological analysis of tissues 5 days after injection of the contrast agent showed cytotoxicity in the spleen, but no abnormalities were observed in the liver, lungs, kidneys, and bladder.


Subject(s)
Contrast Media , Gadolinium , Nanoparticles , X-Ray Microtomography/methods , Animals , Colloids , Contrast Media/pharmacokinetics , Contrast Media/toxicity , Gadolinium/pharmacokinetics , Gadolinium/toxicity , Male , Mice , Mice, Inbred C57BL , Myoblasts/drug effects , Myoblasts/metabolism , Nanoparticles/toxicity , Polyethylene Glycols , Tissue Distribution , Whole Body Imaging
16.
Nanomaterials (Basel) ; 11(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920657

ABSTRACT

Salivary proteins such as histatins (HTNs) have demonstrated critical biological functions directly related to tooth homeostasis and prevention of dental caries. However, HTNs are susceptible to the high proteolytic activities in the oral environment. Therefore, pH-sensitive chitosan nanoparticles (CNs) have been proposed as potential carriers to protect proteins from enzymatic degradation at physiological salivary pH. Four different types of chitosan polymers were investigated and the optimal formulation had good batch to batch reproducibility, with an average hydrodynamic diameter of 144 ± 6 nm, a polydispersity index of 0.15 ± 0.04, and a zeta potential of 18 ± 4 mV at a final pH of 6.3. HTN3 encapsulation and release profiles were characterized by cationic polyacrylamide gel electrophoresis. The CNs successfully encapsulated HTN3 and selectively swelled at acidic pH to facilitate HTN3 release. Protection of HTN3 against enzymatic degradation was investigated in diluted whole saliva. HTN3 encapsulated in the CNs had a prolonged survival time compared to the free HTN3. CNs with and without HTN3 also successfully reduced biofilm weight and bacterial viability. The results of this study have demonstrated the suitability of CNs as potential protein carriers for oral applications, especially for complications occurring at acidic conditions.

17.
Biomed Mater ; 16(4)2021 04 02.
Article in English | MEDLINE | ID: mdl-33711838

ABSTRACT

Osteoarthritis (OA) is a leading cause of chronic disability. It is a progressive disease, involving pathological changes to the entire joint, resulting in joint pain, stiffness, swelling, and loss of mobility. There is currently no disease-modifying pharmaceutical treatment for OA, and the treatments that do exist suffer from significant side effects. An increasing understanding of the molecular pathways involved in OA is leading to many potential drug targets. However, both current and new therapies can benefit from a targeted approach that delivers drugs selectively to joints at therapeutic concentrations, while limiting systemic exposure to the drugs. Delivery systems including hydrogels, liposomes, and various types of particles have been explored for intra-articular drug delivery. This review will describe progress over the past several years in the development of polymer-based particles for OA treatment, as well as theirin vitro, in vivo, and clinical evaluation. Systems based on biopolymers such as polysaccharides and polypeptides, as well as synthetic polyesters, poly(ester amide)s, thermoresponsive polymers, poly(vinyl alcohol), amphiphilic polymers, and dendrimers will be described. We will discuss the role of particle size, biodegradability, and mechanical properties in the behavior of the particles in the joint, and the challenges to be addressed in future research.


Subject(s)
Osteoarthritis , Polymers , Drug Delivery Systems , Humans , Hydrogels , Injections, Intra-Articular , Osteoarthritis/drug therapy , Osteoarthritis/pathology
19.
Org Biomol Chem ; 18(47): 9639-9652, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33206746

ABSTRACT

New amphiphilic carbosilane dendrons with pH-dependent behaviour based on the presence of carboxylate (propionate or succinate) groups at their peripheries and a fatty acid at the focal point were developed. In the presence of salts, they were able to form micelles with critical aggregation concentrations increasing with increasing dendron generation. Their thermodynamic parameters were calculated from surface tension measurements and their diameters at different pHs were measured by dynamic light scattering. These micelles were stable at basic pH but degraded under acidic conditions. No significant differences were found for the propionate and succinate based dendron micelles at basic or acidic pH, but the succinate dendron assemblies were more stable at neutral pH. The properties of these systems as drug nano-carriers were studied using both hydrophilic and hydrophobic molecules, and the drug loading varied with the structure and charge of the drug. In addition, due to the presence of multiple negative charges, the dendrons exhibited anti-HIV activity. Higher generation dendrons with more peripheral carboxylates that were not assembled into micelles were more active than micelles composed of lower generation dendrons having fewer peripheral carboxylates.


Subject(s)
Silanes
20.
Cureus ; 12(8): e10022, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32983717

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy is expanding to a wider patient population; however, cytokine release syndrome (CRS) is the most important adverse event of these therapies. Patients suffering from high-grade CRS also develop signs of cardiac dysfunction and frequently manifest vascular leakage with peripheral and pulmonary edema. We present an unusual case of a 68-year-old female with stage III endometrial carcinosarcoma, who was admitted for T-cell therapy. The patient developed symptoms of CRS within 12 hours of T-cell therapy and expired shortly thereafter. Autopsy of the patient revealed interstitial edema and lymphocytic infiltrates in right and left ventricles along with foci of myocyte necrosis and perivascular fibrosis, more prominent in the right ventricle, consistent with immune therapy-mediated myocarditis. It is important to recognize that CRS progresses rapidly and can have potentially dangerous consequences, so it is imperative to anticipate and treat it early. Cases should be individualized and treated accordingly.

SELECTION OF CITATIONS
SEARCH DETAIL
...