Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1307: 342560, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38719398

ABSTRACT

BACKGROUND: Point-of-care (POC) nucleic acid amplification tests (NAAT) can significantly expand testing coverage, which is critical for infectious disease diagnostics and monitoring. The development of various isothermal amplification techniques greatly simplifies NAATs, but the cumbersome nucleic acid extraction step remains a bottleneck for the POC. Alternatively, extraction-free amplification, where crude samples are directly added into the assay, substantially simplifies the workflow. However, sample dilution is often needed in extraction-free amplification to reduce assay inhibition from sample matrices. Since NAATs are typically run at small volumes around 20 µL, the input sample quantity is therefore limited, resulting in an inevitable sensitivity loss. RESULTS: Here we explore the potential to perform isothermal amplification in larger reaction volumes to accommodate larger sample quantities, thereby improving sensitivity in extraction-free amplification. We demonstrated the approach by developing large-volume reverse transcription loop-mediated isothermal amplification (RT-LAMP) for HIV RNA detection from fingerstick plasma. We found that LAMP at reaction volumes up to 1 mL maintained the same performance. We then identified plasma dilution conditions needed to maintain the limit of detection in RT-LAMP. Subsequently, using inactivated HIV virus, we showed the successful detection of 24 HIV RNA copies in a 500 µL RT-LAMP reaction in the presence of 20 µL plasma (fingerstick volumes), translating to a viral load of 1200 copies per mL. To reduce the increased reagent cost with expanded reaction volumes, we further identified lower-cost reagents with maintained assay performance. Moreover, we showed that large-volume LAMP, compared to 20 µL reactions, could tolerate higher concentrations of various inhibitors in the sample, such as albumin and GuSCN. SIGNIFICANCE AND NOVELTY: NAATs are conventionally conducted at small reaction volumes. Here we demonstrated that LAMP can be run at large reaction volumes (over 100 µL) with maintained assay performance, allowing sample inhibition to be mitigated while accommodating larger sample quantities. The same strategy of expanding reaction volumes could be applied to other isothermal amplification methods and various POC applications, to streamline test workflows and/or improve assay sensitivity.


Subject(s)
Nucleic Acid Amplification Techniques , RNA, Viral , Nucleic Acid Amplification Techniques/methods , Humans , RNA, Viral/blood , HIV Infections/blood , HIV Infections/diagnosis , HIV Infections/virology , HIV-1/genetics , HIV-1/isolation & purification , Limit of Detection , Molecular Diagnostic Techniques
2.
medRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38633802

ABSTRACT

Pathogens encapsulate or encode their own suite of enzymes to facilitate replication in the host. The pathogen-derived enzymes possess specialized activities that are essential for pathogen replication and have naturally been candidates for drug targets. Phenotypic assays detecting the activities of pathogen-derived enzymes and characterizing their inhibition under drugs offer an opportunity for pathogen detection, drug resistance testing for individual patients, and as a research tool for new drug development. Here, we used HIV as an example to develop assays targeting the reverse transcriptase (RT) enzyme encapsulated in HIV for sensitive detection and phenotypic characterization, with the potential for point-of-care (POC) applications. Specifically, we targeted the complementary (cDNA) generation activity of the HIV RT enzyme by adding engineered RNA as substrates for HIV RT enzyme to generate cDNA products, followed by cDNA amplification and detection facilitated by loop-mediated isothermal amplification (LAMP) or CRISPR-Cas systems. To guide the assay design, we first used qPCR to characterize the cDNA generation activity of HIV RT enzyme. In the LAMP-mediated Product-Amplified RT activity assay (LamPART), the cDNA generation and LAMP amplification were combined into one pot with novel assay designs. When coupled with direct immunocapture of HIV RT enzyme for sample preparation and endpoint lateral flow assays for detection, LamPART detected as few as 20 copies of HIV RT enzyme spiked into 25µL plasma (fingerstick volume), equivalent to a single virion. In the Cas-mediated Product-Amplified RT activity assay (CasPART), we tailored the substrate design to achieve a LoD of 2e4 copies (1.67fM) of HIV RT enzyme. Furthermore, with its phenotypic characterization capability, CasPART was used to characterize the inhibition of HIV RT enzyme under antiretroviral drugs and differentiate between wild-type and mutant HIV RT enzyme for potential phenotypic drug resistance testing. Moreover, the CasPART assay can be readily adapted to target the activity of other pathogen-derived enzymes. As a proof-of-concept, we successfully adapted CasPART to detect HIV integrase with a sensitivity of 83nM. We anticipate the developed approach of detecting enzyme activity with product amplification has the potential for a wide range of pathogen detection and phenotypic characterization.

3.
Ann Biomed Eng ; 51(8): 1738-1746, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36966247

ABSTRACT

Single ventricle physiology (SVP) is used to describe any congenital heart lesion that is unable to support independent pulmonary and systemic circulations. Current treatment strategies rely on a series of palliation surgeries that culminate in the Fontan physiology, which relies on the single functioning ventricle to provide systemic circulation while passively routing venous return through the pulmonary circulation. Despite significant reductions in early mortality, the presence of atrioventricular valve (AVV) regurgitation is a key predictor of heart failure in these patients. We sought to evaluate the biomechanical changes associated with the AVV in SVP physiologies. Left and right ventricles were sutured onto patient-derived 3D-printed mounts and mounted into an ex vivo systemic heart simulator capable of reproducing Norwood, Glenn, Fontan and Late Fontan physiologies. We found that the tricuspid anterior leaflet experienced elevated maximum force, average force, and maximum yank compared to the posterior and septal leaflets. Between physiologies, maximum yank was greatest in the Norwood physiology relative to the Glenn, Fontan, and Late Fontan physiologies. These contrasting trends suggest that long- and short-term mechanics of AVV failure in single ventricle differ and that AVV interventions should account for asymmetries in force profiles between leaflets and physiologies.


Subject(s)
Fontan Procedure , Heart Defects, Congenital , Humans , Treatment Outcome , Retrospective Studies , Heart Valves , Heart Ventricles
4.
Sci Adv ; 7(51): eabj1281, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34910507

ABSTRACT

RNA amplification tests sensitively detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but their complexity and cost are prohibitive for expanding coronavirus disease 2019 (COVID-19) testing. We developed "Harmony COVID-19," a point-of-care test using inexpensive consumables, ready-to-use reagents, and a simple device. Our ready-to-use, multiplexed reverse transcription, loop-mediated isothermal amplification (RT-LAMP) can detect down to 0.38 SARS-CoV-2 RNA copies/µl and can report in 17 min for high­viral load samples (5000 copies/µl). Harmony detected 97 or 83% of contrived samples with ≥0.5 viral particles/µl in nasal matrix or saliva, respectively. Evaluation in clinical nasal specimens (n = 101) showed 100% detection of RNA extracted from specimens with ≥0.5 SARS-CoV-2 RNA copies/µl, with 100% specificity in specimens positive for other respiratory pathogens. Extraction-free analysis (n = 29) had 95% success in specimens with ≥1 RNA copies/µl. Usability testing performed first time by health care workers showed 95% accuracy.

SELECTION OF CITATIONS
SEARCH DETAIL
...