Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Org Chem ; 15: 2473-2485, 2019.
Article in English | MEDLINE | ID: mdl-31666882

ABSTRACT

Our undergraduate research group has long focused on the preparation and investigation of electron-deficient analogs of the perimidinespirohexadienone (PSHD) family of photochromic molecular switches for potential application as "photochromic photooxidants" for gating sensitivity to photoinduced charge transfer. We previously reported the photochemistry of two closely related and more reducible quinazolinespirohexadienones (QSHDs), wherein the naphthalene of the PSHD is replaced with a quinoline. In the present work, we report our investigation of the electrochemistry of these asymmetric QSHDs. In addition to the short wavelength and photochromic long-wavelength isomers, we have found that a second, distinct long-wavelength isomer is produced electrochemically. This different long-wavelength isomer arises from a difference in the regiochemistry of spirocyclic ring-opening. The structures of both long-wavelength isomers were ascertained by cyclic voltammetry and 1H NMR analyses, in concert with computational modeling. These results are compared to those for the symmetric parent PSHD, which due to symmetry possesses only a single possible regioisomer upon either electrochemical or photochemical ring-opening. Density functional theory calculations of bond lengths, bond orders, and molecular orbitals allow the rationalization of this differential photochromic vs electrochromic behavior of the QSHDs.

2.
J Am Chem Soc ; 136(34): 11994-2003, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25072525

ABSTRACT

Two molecules in which the intensity of shorter-wavelength fluorescence from a strong fluorophore is modulated by longer-wavelength irradiation of an attached merocyanine-spirooxazine reverse photochromic moiety have been synthesized and studied. This unusual fluorescence behavior is the result of quenching of fluorophore fluorescence by the thermally stable, open, zwitterionic form of the spirooxazine, whereas the photogenerated closed, spirocyclic form has no effect on the fluorophore excited state. The population ratio of the closed and open forms of the spirooxazine is controlled by the intensity of the longer-wavelength modulated light. Both square wave and sine wave modulation were investigated. Because the merocyanine-spirooxazine is an unusual reverse photochrome with a thermally stable long-wavelength absorbing form and a short-wavelength absorbing photogenerated isomer with a very short lifetime, this phenomenon does not require irradiation of the molecules with potentially damaging ultraviolet light, and rapid modulation of fluorescence is possible. Molecules demonstrating these properties may be useful in fluorescent probes, as their use can discriminate between probe fluorescence and various types of adventitious "autofluorescence" from other molecules in the system being studied.


Subject(s)
Benzopyrans/chemistry , Fluorescent Dyes/chemical synthesis , Indoles/chemistry , Light , Oxazines/chemistry , Spiro Compounds/chemistry , Absorption, Radiation , Electrochemical Techniques , Fluorescent Dyes/chemistry , Models, Chemical , Molecular Structure , Photochemical Processes
3.
J Org Chem ; 77(19): 8689-95, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-22946604

ABSTRACT

The spirocyclic oxazinoquinolinespirohexadienone (OSHD) "photochromes" are computationally predicted to be an attractive target as electron deficient analogues of the perimidinespirohexadienone (PSHD) photochromes, for eventual application as photochromic photooxidants. We have found the literature method for their preparation unsuitable and present an alternative synthesis. Unfortunately the product of this synthesis is the long wavelength (LW) ring-opened quinonimine isomer of the OSHD. We have found this isomer does not close to the spirocyclic short wavelength isomer (SW) upon prolonged standing in the dark, unlike other PSHD photochromes. The structure of this long wavelength isomer was found by NMR and X-ray crystallography to be exclusively the quinolinone (keto) tautomer, though experimental cyclic voltammetry supported by our computational methodology indicates that the quinolinol (enol) tautomer (not detected by other means) may be accessible through a fast equilibrium lying far toward the keto tautomer. Computations also support the relative stability order of keto LW over enol LW over SW.

4.
J Org Chem ; 77(15): 6423-30, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22725136

ABSTRACT

A method for predicting the ground state reduction potentials of organic molecules on the basis of the correlation of computed energy differences between the starting S(0) and one-electron-reduced D(0) species with experimental reduction potentials in acetonitrile has been expanded to cover 3.5 V of potential range and 74 compounds across 6 broad families of molecules. Utilizing the conductor-like polarizable continuum model of implicit solvent allows a global correlation that is computationally efficient and has improved accuracy, with r(2) > 0.98 in all cases and root mean square deviation errors of <90 mV (mean absolute deviations <70 mV) for either B3LYP/6-311+G(d,p) or B3LYP//6-31G(d) with an appropriate choice of radii (UAKS or UA0). The correlations are proven to be robust across a wide range of structures and potentials, including four larger (27-28 heavy atoms) and more conformationally flexible photochromic molecules not used in calibrating the correlation. The method is also proven to be robust to a number of minor student "mistakes" or methodological inconsistencies.


Subject(s)
Organic Chemicals/chemistry , Quantum Theory , Molecular Structure , Oxidation-Reduction
5.
J Phys Chem A ; 112(25): 5684-90, 2008 Jun 26.
Article in English | MEDLINE | ID: mdl-18564833

ABSTRACT

A simple computational approach for predicting ground-state reduction potentials based upon gas phase geometry optimizations at a moderate level of density functional theory followed by single-point energy calculations at higher levels of theory in the gas phase or with polarizable continuum solvent models is described. Energies of the gas phase optimized geometries of the S0 and one-electron-reduced D0 states of 35 planar aromatic organic molecules spanning three distinct families of organic photooxidants are computed in the gas phase as well as well in implicit solvent with IPCM and CPCM solvent models. Correlation of the D0 - S0 energy difference (essentially an electron affinity) with experimental reduction potentials from the literature (in acetonitrile vs SCE) within a single family, or across families when solvent models are used, yield correlations with r(2) values in excess of 0.97 and residuals of about 100 mV or less, without resorting to computationally expensive vibrational calculations or thermodynamic cycles.


Subject(s)
Models, Theoretical , Organic Chemicals/chemistry , Thermodynamics , Gases , Oxidation-Reduction
6.
J Org Chem ; 71(9): 3527-32, 2006 Apr 28.
Article in English | MEDLINE | ID: mdl-16626136

ABSTRACT

A series of peroxyl radical clocks has been developed and calibrated based on the competition between the unimolecular beta-fragmentation (k(beta)) of a peroxyl radical and its bimolecular reaction with a hydrogen atom donor (k(H)). These clocks are based on either methyl linoleate or allylbenzene and were calibrated directly with alpha-tocopherol or methyl linoleate, which have well-established rate constants for reaction with peroxyl radicals (k(H-tocopherol) = 3.5 x 10(6) M(-1) s(-1), k(H-linoleate) = 62 M(-1) s(-1)). This peroxyl radical clock methodology has been successfully applied to determine inhibition and propagation rate constants ranging from 10(0) to 10(7) M(-1) s(-1).


Subject(s)
Peroxides/chemistry , Calibration , Chromatography, High Pressure Liquid , Linoleic Acids/chemistry , Oxidation-Reduction , Vitamin E/chemistry
7.
J Org Chem ; 70(10): 4170-3, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15876112

ABSTRACT

[reaction: see text] Following a protocol developed by Mathivanan, Johnston, and Wayner (J. Phys. Chem. 1995, 99, 8190-8195), the radical anions of several cyclopropyl- and oxiranyl-containing carbonyl compounds were generated in an effort to measure the rate constants for their ring opening (k(o)) by laser flash photolysis. The results of these experiments are compared to those obtained from earlier electrochemical studies, and the combined data set is used to rationalize the kinetics of radical anion ring opening in a general context by using Saveant's theory pertaining to stepwise dissociative electron transfer (Acc. Chem. Res. 1993, 26, 455-461). Compared to cyclopropylcarbinyl --> homoallyl rearrangements of neutral free radicals, at comparable driving force, the radical anion ring openings are slightly slower. The small difference in rate is attributed to the contribution of an additional, approximately 2 kcal/mol, solvent reorganization component for the radical anion rearrangements. The solvent reorganization energy for ring opening of these radical anions is believed to be small because the negative charge does not move appreciably in the progression reactant --> transition state --> product.

SELECTION OF CITATIONS
SEARCH DETAIL
...