Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496506

ABSTRACT

Adult T cell leukemia (ATL), caused by infection with human T cell leukemia virus type 1 (HTLV-1), is often complicated by hypercalcemia and osteolytic lesions. Therefore, we studied the communication between patient-derived ATL cells (ATL-PDX) and HTLV-1 immortalized CD4+ T cell lines (HTLV/T) with osteoclasts and their effects on bone mass in mice. Intratibial inoculation of some HTLV/T lead to a profound local decrease in bone mass similar to marrow-replacing ATL-PDX, despite the fact that few HTLV/T cells persisted in the bone. To study the direct effect of HTLV/T and ATL-PDX on osteoclasts, supernatants were added to murine and human osteoclast precursors. ATL-PDX supernatants from hypercalcemic patients promoted formation of mature osteoclasts, while those from HTLV/T were variably stimulatory, but had largely consistent effects between human and murine cultures. Interestingly, this osteoclastic activity did not correlate with expression of osteoclastogenic cytokine RANKL, suggesting an alternative mechanism. HTLV/T and ATL-PDX produce small extracellular vesicles (sEV), known to facilitate HTLV-1 infection. We hypothesized that these sEV also mediate bone loss by targeting osteoclasts. We isolated sEV from both HTLV/T and ATL-PDX, and found they carried most of the activity found in supernatants. In contrast, sEV from uninfected activated T cells had little effect. Analysis of sEV (both active and inactive) by mass spectrometry and electron microscopy confirmed absence of RANKL and intact virus. Viral proteins Tax and Env were only present in sEV from the active, osteoclast-stimulatory group, along with increased representation of proteins involved in osteoclastogenesis and bone resorption. sEV injected over mouse calvaria in the presence of low dose RANKL caused more osteolysis than RANKL alone. Thus, HTLV-1 infection of T cells can cause release of sEV with strong osteolytic potential, providing a mechanism beyond RANKL production that modifies the bone microenvironment, even in the absence of overt leukemia.

2.
Mol Cell Proteomics ; 22(11): 100647, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716475

ABSTRACT

The NFE2L2 (NRF2) oncogene and transcription factor drives a gene expression program that promotes cancer progression, metabolic reprogramming, immune evasion, and chemoradiation resistance. Patient stratification by NRF2 activity may guide treatment decisions to improve outcome. Here, we developed a mass spectrometry-based targeted proteomics assay based on internal standard-triggered parallel reaction monitoring to quantify 69 NRF2 pathway components and targets, as well as 21 proteins of broad clinical significance in head and neck squamous cell carcinoma (HNSCC). We improved an existing internal standard-triggered parallel reaction monitoring acquisition algorithm, called SureQuant, to increase throughput, sensitivity, and precision. Testing the optimized platform on 27 lung and upper aerodigestive cancer cell models revealed 35 NRF2 responsive proteins. In formalin-fixed paraffin-embedded HNSCCs, NRF2 signaling intensity positively correlated with NRF2-activating mutations and with SOX2 protein expression. Protein markers of T-cell infiltration correlated positively with one another and with human papilloma virus infection status. CDKN2A (p16) protein expression positively correlated with the human papilloma virus oncogenic E7 protein and confirmed the presence of translationally active virus. This work establishes a clinically actionable HNSCC protein biomarker assay capable of quantifying over 600 peptides from frozen or formalin-fixed paraffin-embedded archived tissues in under 90 min.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/metabolism , NF-E2-Related Factor 2 , Proteomics , Papillomavirus Infections/genetics , Papillomavirus Infections/metabolism , Biomarkers, Tumor/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/therapeutic use , Formaldehyde
3.
Sci Transl Med ; 15(693): eade6285, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37099634

ABSTRACT

Sleep loss is associated with cognitive decline in the aging population and is a risk factor for Alzheimer's disease (AD). Considering the crucial role of immunomodulating genes such as that encoding the triggering receptor expressed on myeloid cells type 2 (TREM2) in removing pathogenic amyloid-ß (Aß) plaques and regulating neurodegeneration in the brain, our aim was to investigate whether and how sleep loss influences microglial function in mice. We chronically sleep-deprived wild-type mice and the 5xFAD mouse model of cerebral amyloidosis, expressing either the humanized TREM2 common variant, the loss-of-function R47H AD-associated risk variant, or without TREM2 expression. Sleep deprivation not only enhanced TREM2-dependent Aß plaque deposition compared with 5xFAD mice with normal sleeping patterns but also induced microglial reactivity that was independent of the presence of parenchymal Aß plaques. We investigated lysosomal morphology using transmission electron microscopy and found abnormalities particularly in mice without Aß plaques and also observed lysosomal maturation impairments in a TREM2-dependent manner in both microglia and neurons, suggesting that changes in sleep modified neuro-immune cross-talk. Unbiased transcriptome and proteome profiling provided mechanistic insights into functional pathways triggered by sleep deprivation that were unique to TREM2 and Aß pathology and that converged on metabolic dyshomeostasis. Our findings highlight that sleep deprivation directly affects microglial reactivity, for which TREM2 is required, by altering the metabolic ability to cope with the energy demands of prolonged wakefulness, leading to further Aß deposition, and underlines the importance of sleep modulation as a promising future therapeutic approach.


Subject(s)
Alzheimer Disease , Amyloidosis , Mice , Animals , Microglia/metabolism , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Sleep Deprivation/pathology , Amyloid beta-Peptides/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Plaque, Amyloid/pathology , Disease Models, Animal , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
4.
J Pediatr Gastroenterol Nutr ; 50(4): 411-6, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20216099

ABSTRACT

BACKGROUND: Biliary atresia (BA) is the most serious liver disease in infants. Diagnosis currently depends on surgical exploration of the biliary tree. Noninvasive tests that distinguish BA from other types of neonatal liver disease are not available. PATIENTS AND METHODS: To identify potential serum biomarkers that classify children with neonatal cholestasis, we performed 2-dimensional difference gel electrophoresis, statistical analysis, and tandem mass spectrometry using serum samples from 19 infants with BA and 19 infants with non-BA neonatal cholestasis. RESULTS: Eleven potential serum biomarkers were found that could in combination classify children with neonatal cholestasis. CONCLUSIONS: Although no single biomarker or imaging test adequately distinguishes BA from other types of neonatal cholestasis, combinations of biomarkers, imaging tests, and noninvasive clinical criteria should be further explored as potential tests for rapid and accurate diagnosis of BA.


Subject(s)
Biliary Atresia/diagnosis , Blood Proteins/analysis , Cholestasis/diagnosis , Infant, Newborn, Diseases/diagnosis , Biliary Atresia/blood , Biomarkers/blood , Child, Preschool , Cholestasis/blood , Diagnosis, Differential , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Infant, Newborn , Infant, Newborn, Diseases/blood , Male , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...