Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1331474, 2024.
Article in English | MEDLINE | ID: mdl-38650939

ABSTRACT

Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.


Subject(s)
Aluminum Hydroxide , Antibodies, Protozoan , Immunoglobulin G , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Poly I-C , Protozoan Proteins , Animals , Malaria Vaccines/immunology , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Mice , Plasmodium vivax/immunology , Antibodies, Protozoan/immunology , Poly I-C/immunology , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Aluminum Hydroxide/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Female , Adjuvants, Immunologic , Immunity, Humoral , Immunity, Cellular , Mice, Inbred BALB C
2.
Mem Inst Oswaldo Cruz ; 119: e230217, 2024.
Article in English | MEDLINE | ID: mdl-38537036

ABSTRACT

BACKGROUND: Malaria is an infectious disease caused by protozoan parasites belonging to the genus Plasmodium. Human-to-human transmission depends on a mosquito vector; thus, the interruption of parasite transmission from humans to mosquitoes is an important approach in the fight against malaria. The parasite stages infectious to mosquitoes are the gametocytes, sexual stages that are ingested by the vector during a blood meal and transform into male and female gametes in the midgut. Immunity against sexual stage antigens expressed by gametocytes, gametes, and the zygote formed after fertilisation can interrupt the parasite sexual cycle in the mosquito. This transmission blocking immunity is mediated by specific antibodies ingested during the mosquito blood feed, inhibiting the parasite development in the midgut. Merozoite thrombospondin related anonymous protein (MTRAP) is a merozoite and gametocyte surface protein essential for gamete egress from erythrocytes and for parasite transmission to mosquitoes. OBJECTIVES: Here, we evaluated the potential of the P. berghei MTRAP to elicit antibodies with the ability to inhibit gamete fertilisation in vitro. METHODS: We expressed a soluble recombinant PbMTRAP and used it to immunise BALB/c mice. The transmission blocking activity of the anti-rPbMTRAP antibodies was tested through in vivo challenge experiments followed by in vitro conversion assays. FINDINGS: Immunisations with the rPbMTRAP induced a strong antibody response and the antibodies recognised the native protein by Western Blot and IFA. Anti-rPbMTRAP present in the blood stream of immunised mice partially inhibited gamete conversion into ookinetes. CONCLUSION: Our results indicate that antibodies to PbMTRAP may reduce but are not sufficient to completely block transmission.


Subject(s)
Culicidae , Malaria , Male , Female , Humans , Animals , Mice , Protozoan Proteins , Plasmodium berghei , Merozoites , Malaria/prevention & control
3.
Mem. Inst. Oswaldo Cruz ; 119: e230217, 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1550580

ABSTRACT

BACKGROUND Malaria is an infectious disease caused by protozoan parasites belonging to the genus Plasmodium. Human-to-human transmission depends on a mosquito vector; thus, the interruption of parasite transmission from humans to mosquitoes is an important approach in the fight against malaria. The parasite stages infectious to mosquitoes are the gametocytes, sexual stages that are ingested by the vector during a blood meal and transform into male and female gametes in the midgut. Immunity against sexual stage antigens expressed by gametocytes, gametes, and the zygote formed after fertilisation can interrupt the parasite sexual cycle in the mosquito. This transmission blocking immunity is mediated by specific antibodies ingested during the mosquito blood feed, inhibiting the parasite development in the midgut. Merozoite thrombospondin related anonymous protein (MTRAP) is a merozoite and gametocyte surface protein essential for gamete egress from erythrocytes and for parasite transmission to mosquitoes. OBJECTIVES Here, we evaluated the potential of the P. berghei MTRAP to elicit antibodies with the ability to inhibit gamete fertilisation in vitro. METHODS We expressed a soluble recombinant PbMTRAP and used it to immunise BALB/c mice. The transmission blocking activity of the anti-rPbMTRAP antibodies was tested through in vivo challenge experiments followed by in vitro conversion assays. FINDINGS Immunisations with the rPbMTRAP induced a strong antibody response and the antibodies recognised the native protein by Western Blot and IFA. Anti-rPbMTRAP present in the blood stream of immunised mice partially inhibited gamete conversion into ookinetes. CONCLUSION Our results indicate that antibodies to PbMTRAP may reduce but are not sufficient to completely block transmission.

4.
Front Immunol ; 13: 910022, 2022.
Article in English | MEDLINE | ID: mdl-35844531

ABSTRACT

Adjuvants are essential for vaccine development, especially subunit-based vaccines such as those containing recombinant proteins. Increasing the knowledge of the immune response mechanisms generated by adjuvants should facilitate the formulation of vaccines in the future. The present work describes the immune phenotypes induced by Poly (I:C) and Montanide ISA 720 in the context of mice immunization with a recombinant protein based on the Plasmodium vivax circumsporozoite protein (PvCSP) sequence. Mice immunized with the recombinant protein plus Montanide ISA 720 showed an overall more robust humoral response, inducing antibodies with greater avidity to the antigen. A general trend for mixed Th1/Th2 inflammatory cytokine profile was increased in Montanide-adjuvanted mice, while a balanced profile was observed in Poly (I:C)-adjuvanted mice. Montanide ISA 720 induced a gene signature in B lymphocytes characteristic of heme biosynthesis, suggesting increased differentiation to Plasma Cells. On the other hand, Poly (I:C) provoked more perturbations in T cell transcriptome. These results extend the understanding of the modulation of specific immune responses induced by different classes of adjuvants, and could support the optimization of subunit-based vaccines.


Subject(s)
Adjuvants, Immunologic , Antibodies, Protozoan , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Animals , Immune System , Immunity , Mice , Mineral Oil , Poly I-C , Recombinant Proteins
5.
Sci Rep ; 11(1): 17928, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504134

ABSTRACT

Malaria is a highly prevalent parasitic disease in regions with tropical and subtropical climates worldwide. Among the species of Plasmodium causing human malaria, P. vivax is the second most prevalent and the most geographically widespread species. A major target of a pre-erythrocytic vaccine is the P. vivax circumsporozoite protein (PvCSP). In previous studies, we fused two recombinant proteins representing three allelic variants of PvCSP (VK210, VK247 and P. vivax-like) to the mumps virus nucleocapsid protein to enhance immune responses against PvCSP. The objective of the present study was to evaluate the protective efficacy of these recombinants in mice challenged with transgenic P. berghei parasites expressing PvCSP allelic variants. Formulations containing Poly (I:C) or Montanide ISA720 as adjuvants elicited high and long-lasting IgG antibody titers specific to each PvCSP allelic variant. Immunized mice were challenged with two existing chimeric P. berghei parasite lines expressing PvCSP-VK210 and PvCSP-VK247. We also developed a novel chimeric line expressing the third allelic variant, PvCSP-P. vivax-like, as a new murine immunization-challenge model. Our formulations conferred partial protection (significant delay in the time to reach 1% parasitemia) against challenge with the three chimeric parasites. Our results provide insights into the development of a vaccine targeting multiple strains of P. vivax.


Subject(s)
Alleles , Immunity, Humoral , Malaria Vaccines/immunology , Malaria, Vivax/prevention & control , Plasmodium vivax/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Vaccination/methods , Adjuvants, Immunologic , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Female , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Malaria Vaccines/chemistry , Malaria, Vivax/parasitology , Mice , Mice, Inbred C57BL , Models, Animal , Organisms, Genetically Modified , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Plasmodium berghei/metabolism , Protozoan Proteins/metabolism , Recombinant Proteins/immunology
6.
Front Cell Infect Microbiol ; 11: 681063, 2021.
Article in English | MEDLINE | ID: mdl-34222049

ABSTRACT

Malaria is a serious public health problem that affects mostly the poorest countries in the world, killing more than 400,000 people per year, mainly children under 5 years old. Among the control and prevention strategies, the differential diagnosis of the Plasmodium-infecting species is an important factor for selecting a treatment and, consequently, for preventing the spread of the disease. One of the main difficulties for the detection of a specific Plasmodium sp is that most of the existing methods for malaria diagnosis focus on detecting P. falciparum. Thus, in many cases, the diagnostic methods neglect the other non-falciparum species and underestimate their prevalence and severity. Traditional methods for diagnosing malaria may present low specificity or sensitivity to non-falciparum spp. Therefore, there is high demand for new alternative methods able to differentiate Plasmodium species in a faster, cheaper and easier manner to execute. This review details the classical procedures and new perspectives of diagnostic methods for malaria non-falciparum differential detection and the possibilities of their application in different circumstances.


Subject(s)
Malaria, Falciparum , Malaria , Plasmodium , Child , Child, Preschool , Humans , Malaria/diagnosis , Plasmodium falciparum , Prevalence , Sensitivity and Specificity
7.
Anal Chim Acta ; 1127: 122-130, 2020 Aug 29.
Article in English | MEDLINE | ID: mdl-32800115

ABSTRACT

An ultrasensitive and portable microfluidic electrochemical immunosensor for SOX-2 cancer biomarker determination was developed. The selectivity and sensitivity of the sensor were improved by modifying the microfluidic channel. This was accomplished through a physical-chemical treatment to produce a hydrophilic surface, with an increased surface to volume/ratio, where the anti-SOX-2 antibodies can be covalently immobilized. A sputtered gold electrode was used as detector and its surface was activated by using a dynamic hydrogen bubble template method. As a result, a gold nanoporous structure (NPAu) with outstanding properties, like high specific surface area, large pore volume, uniform nanostructure, good conductivity, and excellent electrochemical activity was obtained. SOX-2 present in the sample was bound to the anti-SOX-2 immobilized in the microfluidic channel, and then was labeled with a second antibody marked with horseradish peroxidase (HRP-anti-SOX-2) like a sandwich immunoassay. Finally, an H2O2 + catechol solution was added, and the enzymatic product (quinone) was reduced on the NPAu electrode at +0.1 V (vs. Ag). The current obtained was directly proportional to the SOX-2 concentration in the sample. The detection limit achieved was 30 pg mL-1, and the coefficient of variation was less than 4.75%. Therefore, the microfluidic electrochemical immunosensor is a suitable clinical device for in situ SOX-2 determination in real samples.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanopores , Antibodies, Immobilized , Electrochemical Techniques , Gold , Hydrogen Peroxide , Immunoassay , Limit of Detection , Microfluidics
8.
Sci Rep ; 10(1): 14020, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32820195

ABSTRACT

Circumsporozoite protein (CSP) variants of P. vivax, besides having variations in the protein repetitive portion, can differ from each other in aspects such as geographical distribution, intensity of transmission, vectorial competence and immune response. Such aspects must be considered to P. vivax vaccine development. Therefore, we evaluated the immunogenicity of novel recombinant proteins corresponding to each of the three P. vivax allelic variants (VK210, VK247 and P. vivax-like) and of the C-terminal region (shared by all PvCSP variants) in naturally malaria-exposed populations of Brazilian Amazon. Our results demonstrated that PvCSP-VK210 was the major target of humoral immune response in studied population, presenting higher frequency and magnitude of IgG response. The IgG subclass profile showed a prevalence of cytophilic antibodies (IgG1 and IgG3), that seem to have an essential role in protective immune response. Differently of PvCSP allelic variants, antibodies elicited against C-terminal region of protein did not correlate with epidemiological parameters, bringing additional evidence that humoral response against this protein region is not essential to protective immunity. Taken together, these findings increase the knowledge on serological response to distinct PvCSP allelic variants and may contribute to the development of a global and effective P. vivax vaccine.


Subject(s)
Alleles , Antibodies, Protozoan/immunology , Binding Sites, Antibody , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Case-Control Studies , Child , Child, Preschool , Female , HEK293 Cells , Humans , Immunoglobulin G/immunology , Malaria Vaccines/immunology , Malaria, Vivax/prevention & control , Male , Middle Aged , Protozoan Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Young Adult
9.
Microorganisms ; 8(6)2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32560380

ABSTRACT

Infections with Plasmodium vivax are predominant in the Americas, representing 75% of malaria cases. Previously perceived as benign, malaria vivax is, in fact, a highly debilitating and economically important disease. Considering the high complexity of the malaria parasite life cycle, it has been hypothesized that an effective vaccine formulation against Plasmodium should contain multiple antigens expressed in different parasite stages. Based on that, we analyzed a recombinant P. vivax vaccine formulation mixing the apical membrane antigen 1 ectodomain (PvAMA-1) and a full-length circumsporozoite protein (PvCSP-AllFL) previously studied by our group, which elicits a potent antibody response in mice. Genetically distinct strains of mice (C57BL/6 and BALB/c) were immunized with the proteins, alone or in combination, in the presence of poly(I:C) adjuvant, a TLR3 agonist. In C57BL/6, high-antibody titers were induced against PvAMA-1 and the three PvCSP variants (VK210, VK247, and P. vivax-like). Meanwhile, mixing PvAMA-1 with PvCSP-AllFL had no impact on total IgG antibody titers, which were long-lasting. Moreover, antibodies from immunized mice recognized VK210 sporozoites and blood-stage parasites by immunofluorescence assay. However, in the BALB/c model, the antibody response against PvCSP-AllFL was relatively low. PvAMA-1-specific CD3+CD4+ and CD3+CD8+ T-cell responses were observed in C57BL/6 mice, and the cellular response was impaired by PvCSP-AllFL combination. More relevant, the multistage vaccine formulation provided partial protection in mice challenged with a transgenic Plasmodium berghei sporozoite expressing the homologous PvCSP protein.

10.
J Venom Anim Toxins Incl Trop Dis ; 26: e20190061, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32362926

ABSTRACT

Two years ago, we held an exciting event entitled the São Paulo School of Advanced Sciences on Vaccines (SPSASV). Sixty-eight Ph.D. students, postdoctoral fellows and independent researchers from 37 different countries met at the Mendes Plaza Hotel located in the city of Santos, SP - Brazil to discuss the challenges and the new frontiers of vaccinology. The SPSASV provided a critical and comprehensive view of vaccine research from basics to the current state-of-the-art techniques performed worldwide. For 10 days, we discussed all the aspects of vaccine development in 36 lectures, 53 oral presentations and 2 poster sessions. At the end of the course, participants were further encouraged to present a model of a grant proposal related to vaccine development against individual pathogens. Among the targeted pathogens were viruses (Chikungunya, HIV, RSV, and Influenza), bacteria (Mycobacterium tuberculosis and Streptococcus pyogenes), parasites (Plasmodium falciparum or Plasmodium vivax), and the worm Strongyloides stercoralis. This report highlights some of the knowledge shared at the SPSASV.

11.
Vaccines (Basel) ; 8(2)2020 Apr 19.
Article in English | MEDLINE | ID: mdl-32325874

ABSTRACT

Plasmodium vivax is the most common species of human malaria parasite found outside Africa, with high endemicity in Asia, Central and South America, and Oceania. Although Plasmodium falciparum causes the majority of deaths, P. vivax can lead to severe malaria and result in significant morbidity and mortality. The development of a protective vaccine will be a major step toward malaria elimination. Recently, a formulation containing the three allelic variants of the P. vivax circumsporozoite protein (PvCSP-All epitopes) showed partial protection in mice after a challenge with the hybrid Plasmodium berghei (Pb) sporozoite, in which the PbCSP central repeats were replaced by the VK210 PvCSP repeats (Pb/Pv sporozoite). In the present study, the chimeric PvCSP allelic variants (VK210, VK247, and P. vivax-like) were fused with the mumps virus nucleocapsid protein in the absence (NLP-CSPR) or presence of the conserved C-terminal (CT) domain of PvCSP (NLP-CSPCT). To elicit stronger humoral and cellular responses, Pichia pastoris yeast was used to assemble them as nucleocapsid-like particles (NLPs). Mice were immunized with each recombinant protein adjuvanted with Poly (I:C) and presented a high frequency of antigen-specific antibody-secreting cells (ASCs) on days 5 and 30, respectively, in the spleen and bone marrow. Moreover, high IgG titers against all PvCSP variants were detected in the sera. Later, these immunized mice with NLP-CSPCT were challenged with Pb/Pv sporozoites. Sterile protection was observed in 30% of the challenged mice. Therefore, this vaccine formulation use has the potential to be a good candidate for the development of a universal vaccine against P. vivax malaria.

12.
Front Immunol ; 11: 28, 2020.
Article in English | MEDLINE | ID: mdl-32153555

ABSTRACT

The lack of continuous in vitro cultures has been an obstacle delaying pre-clinical testing of Plasmodium vivax vaccine formulations based on known antigens. In this study, we generated a model to test available formulations based on the P. vivax MSP119 antigen. The Plasmodium berghei strains ANKA and NK65 were modified to express PvMSP119 instead of the endogenous PbMSP119. The hybrid parasites were used to challenge C57BL/6 or BALB/c mice immunized with PvMSP119-based vaccine formulations. The PvMSP119 was correctly expressed in the P. berghei hybrid mutant lines as confirmed by immunofluorescence using anti-PvMSP119 monoclonal antibodies and by Western blot. Replacement of the PbMSP119 by the PvMSP119 had no impact on asexual growth in vivo. High titers of specific antibodies to PvMSP119 were not sufficient to control initial parasitemia in the immunized mice, but late parasitemia control and a balanced inflammatory process protected these mice from dying, suggesting that an established immune response to PvMSP119 in this model can help immunity mounted later during infection.


Subject(s)
Antigens, Protozoan/immunology , Immunogenicity, Vaccine , Malaria Vaccines/immunology , Malaria, Vivax/immunology , Merozoite Surface Protein 1/immunology , Merozoite Surface Protein 1/metabolism , Plasmodium berghei/metabolism , Plasmodium vivax/immunology , Animals , Antibodies, Protozoan/immunology , Female , Malaria, Vivax/parasitology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Parasitemia/immunology , Plasmids/genetics , Plasmodium berghei/genetics , Protozoan Proteins/immunology , Transfection , Treatment Outcome , Vaccination
13.
Article in English | LILACS, VETINDEX | ID: biblio-1091021

ABSTRACT

Two years ago, we held an exciting event entitled the São Paulo School of Advanced Sciences on Vaccines (SPSASV). Sixty-eight Ph.D. students, postdoctoral fellows and independent researchers from 37 different countries met at the Mendes Plaza Hotel located in the city of Santos, SP - Brazil to discuss the challenges and the new frontiers of vaccinology. The SPSASV provided a critical and comprehensive view of vaccine research from basics to the current state-of-the-art techniques performed worldwide. For 10 days, we discussed all the aspects of vaccine development in 36 lectures, 53 oral presentations and 2 poster sessions. At the end of the course, participants were further encouraged to present a model of a grant proposal related to vaccine development against individual pathogens. Among the targeted pathogens were viruses (Chikungunya, HIV, RSV, and Influenza), bacteria (Mycobacterium tuberculosis and Streptococcus pyogenes), parasites (Plasmodium falciparum or Plasmodium vivax), and the worm Strongyloides stercoralis. This report highlights some of the knowledge shared at the SPSASV.(AU)


Subject(s)
Schools , Vaccines , Immunologic Techniques/methods , Research Report , Vaccinology , Hydrogen-Ion Concentration
14.
Sci Rep ; 8(1): 1118, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348479

ABSTRACT

Vaccine development against Plasmodium vivax malaria lags behind that for Plasmodium falciparum. To narrow this gap, we administered recombinant antigens based on P. vivax circumsporozoite protein (CSP) to mice. We expressed in Pichia pastoris two chimeric proteins by merging the three central repeat regions of different CSP alleles (VK210, VK247, and P. vivax-like). The first construct (yPvCSP-AllFL) contained the fused repeat regions flanked by N- and C-terminal regions. The second construct (yPvCSP-AllCT) contained the fused repeat regions and the C-terminal domain, plus RI region. Mice were vaccinated with three doses of yPvCSP in adjuvants Poly (I:C) or Montanide ISA720. We also used replication-defective adenovirus vectors expressing CSP of human serotype 5 (AdHu5) and chimpanzee serotype 68 (AdC68) for priming mice which were subsequently boosted twice with yPvCSP proteins in Poly (I:C) adjuvant. Regardless of the regime used, immunized mice generated high IgG titres specific to all CSP alleles. After challenge with P. berghei ANKA transgenic parasites expressing Pb/PvVK210 or Pb/PvVK247 sporozoites, significant time delays for parasitemia were observed in all vaccinated mice. These vaccine formulations should be clinically tried for their potential as protective universal vaccine against P. vivax malaria.


Subject(s)
Malaria Vaccines/immunology , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Recombinant Proteins/immunology , Adenoviridae/genetics , Amino Acid Sequence , Animals , Antibodies, Protozoan/immunology , Antibody Affinity/immunology , Disease Models, Animal , Female , Genetic Vectors/administration & dosage , Genetic Vectors/chemistry , Immunization , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Malaria Vaccines/genetics , Malaria, Vivax/mortality , Mice , Plasmodium vivax/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
15.
Front Immunol ; 8: 1275, 2017.
Article in English | MEDLINE | ID: mdl-29075260

ABSTRACT

Plasmodium vivax is the most common species that cause malaria outside of the African continent. The development of an efficacious vaccine would contribute greatly to control malaria. Recently, using bacterial and adenoviral recombinant proteins based on the P. vivax circumsporozoite protein (CSP), we demonstrated the possibility of eliciting strong antibody-mediated immune responses to each of the three allelic forms of P. vivax CSP (PvCSP). In the present study, recombinant proteins representing the PvCSP alleles (VK210, VK247, and P. vivax-like), as well as a hybrid polypeptide, named PvCSP-All epitopes, were generated. This hybrid containing the conserved C-terminal of the PvCSP and the three variant repeat domains in tandem were successfully produced in the yeast Pichia pastoris. After purification and biochemical characterization, they were used for the experimental immunization of C57BL/6 mice in a vaccine formulation containing the adjuvant Poly(I:C). Immunization with a recombinant protein expressing all three different allelic forms in fusion elicited high IgG antibody titers reacting with all three different allelic variants of PvCSP. The antibodies targeted both the C-terminal and repeat domains of PvCSP and recognized the native protein on the surface of P. vivax sporozoites. More importantly, mice that received the vaccine formulation were protected after challenge with chimeric Plasmodium berghei sporozoites expressing CSP repeats of P. vivax sporozoites (Pb/PvVK210). Our results suggest that it is possible to elicit protective immunity against one of the most common PvCSP alleles using soluble recombinant proteins expressed by P. pastoris. These recombinant proteins are promising candidates for clinical trials aiming to develop a multiallele vaccine against P. vivax malaria.

16.
Parasit Vectors ; 9(1): 577, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27842609

ABSTRACT

BACKGROUND: Babesia bovis is a tick-transmitted protozoan hemoparasite and the causative agent of bovine babesiosis, a potential risk to more than 500 million cattle worldwide. The vaccines currently available are based on attenuated parasites, which are difficult to produce, and are only recommended for use in bovines under one year of age. When used in older animals, these vaccines may cause life-threatening clinical symptoms and eventually death. The development of a multi-subunit recombinant vaccine against B. bovis would be attractive from an economic standpoint and, most importantly, could be recommended for animals of any age. In the present study, recombinant ectodomains of MSA-2a1, MSA-2b and MSA-2c antigens were expressed in Pichia pastoris yeast as secreted soluble peptides. RESULTS: The antigens were purified to homogeneity, and biochemically and immunologically characterized. A vaccine formulation was obtained by emulsifying a mixture of the three peptides with the adjuvant Montanide ISA 720, which elicited high IgG antibody titers against each of the above antigens. IgG antibodies generated against each MSA-antigen recognized merozoites and significantly inhibited the invasion of bovine erythrocytes. Cellular immune responses were also detected, which were characterized by splenic and lymph node CD4+ T cells producing IFN-γ and TNF-α upon stimulation with the antigens MSA-2a1 or MSA-2c. CONCLUSIONS: These data strongly suggest the high protective potential of the presented formulation, and we propose that it could be tested in vaccination trials of bovines challenged with B. bovis.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Antigens, Surface/immunology , Interferon-gamma/metabolism , Leukocytes, Mononuclear/immunology , Membrane Proteins/immunology , Protozoan Proteins/immunology , Protozoan Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antigens, Protozoan/genetics , Antigens, Surface/genetics , Cattle , Mannitol/administration & dosage , Mannitol/analogs & derivatives , Membrane Proteins/genetics , Oleic Acids/administration & dosage , Protozoan Proteins/genetics , Protozoan Vaccines/administration & dosage , Protozoan Vaccines/genetics , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
17.
Mol Biochem Parasitol ; 203(1-2): 14-24, 2015.
Article in English | MEDLINE | ID: mdl-26493613

ABSTRACT

Phosphatidylinositol (PtdIns) metabolism through phosphatidylinositol kinase (PIKs) activities plays a central role in different signaling pathways. In Trypanosoma cruzi, causative agent of Chagas disease, PIKs have been proposed as target for drug design in order to combat this pathogen. In this work, we studied the classes of PI4K, PIPK and PI3K that could participate in signaling pathways in T. cruzi epimastigote forms. For this reason, we analyzed their enzymatic parameters and detailed responses to avowed kinase inhibitors (adenosine, sodium deoxycholate, wortmannin and LY294002) and activators (Ca(2+), phosphatidic acid, spermine and heparin). Our results suggest the presence and activity of a class III PI4K, a class I PIPK, a class III PI3K previously described (TcVps34) and a class I PI3K. Class I PI3K enzyme, here named TcPI3K, was cloned and expressed in a bacterial system, and their product was tested for kinase activity. The possible participation of TcPI3K in central cellular events of the parasite is also discussed.


Subject(s)
Chagas Disease/parasitology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development , Cloning, Molecular , Drug Design , Enzyme Activators/pharmacology , Enzyme Inhibitors/pharmacology , Humans , Phosphatidylinositol 3-Kinases/classification , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Phylogeny , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/classification , Signal Transduction
18.
Arch Biochem Biophys ; 527(1): 6-15, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22884762

ABSTRACT

Trypanosoma cruzi undergoes differentiation in the rectum of triatomine, where increased osmolarity is caused mainly by elevated content of NaCl from urine. Early biochemical events in response to high osmolarity in this parasite have not been totally elucidated. In order to clarify the relationship between these events and developmental stages of T. cruzi, epimastigotes were subjected to hyperosmotic stress, which caused activation of Na(+)/H(+) exchanger from acidic vacuoles and accumulation of inositol trisphosphate (InsP(3)). Suppression of InsP(3) levels was observed in presence of intracellular Ca(2+) chelator or pre-treatment with 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), which also inhibited the alkalinization of acidic vacuoles via a Na(+)/H(+) exchanger and the consequent increase in cytosolic calcium. These effects were activated and inhibited by PMA and Chelerythrine respectively, suggesting regulation by protein kinase C. The T. cruzi Na(+)/H(+) exchanger, TcNHE1, has 11 transmembrane domains and is localized in acidic vacuoles of epimastigotes. The analyzed biochemical changes were correlated with morphological changes, including an increase in the size of acidocalcisomes and subsequent differentiation to an intermediate form. Both processes were delayed when TcNHE1 was inhibited by EIPA, suggesting that these early biochemical events allow the parasite to adapt to conditions faced in the rectum of the insect vector.


Subject(s)
Chagas Disease/parasitology , Protozoan Proteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , Trypanosoma cruzi/cytology , Trypanosoma cruzi/metabolism , Type C Phospholipases/metabolism , Amino Acid Sequence , Animals , Calcium/metabolism , Calcium Signaling , Enzyme Activation , Humans , Molecular Sequence Data , Osmolar Concentration , Protozoan Proteins/analysis , Sodium-Hydrogen Exchangers/analysis , Trypanosoma cruzi/chemistry
19.
Lipids ; 46(10): 969-79, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21667213

ABSTRACT

Lipid kinases and phosphatases play essential roles in signal transduction processes involved in cytoskeletal rearrangement, membrane trafficking, and cellular differentiation. Phosphatidic acid (PtdOH) is an important mediator lipid in eukaryotic cells, but little is known regarding its regulation in the parasite Trypanosoma cruzi, an agent of Chagas disease. In order to clarify the relationship between PtdOH metabolism and developmental stages of T. cruzi, epimastigotes in culture were subjected to hyperosmotic stress (~1,000 mOsm/L), mimicking the environment in the rectum of vector triatomine bugs. These experimental conditions resulted in differentiation to an intermediate form between epimastigotes and trypomastigotes. Morphological changes of epimastigotes were correlated with an increase in PtdOH mass accomplished by increased enzyme activity of diacylglycerol kinase (DAGK, E.C. 2.7.1.107) and concomitant decreased activity of phosphatidate phosphatases type 1 and type 2 (PAP1, PAP2, E.C. 3.1.3.4). Our results indicate progressive increases of PtdOH levels during the differentiation process, and suggest that the regulation of PtdOH metabolism is an important mechanism in the transition from T. cruzi epimastigote to intermediate form.


Subject(s)
Chagas Disease/parasitology , Phosphatidic Acids/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development , Amino Acid Sequence , Diacylglycerol Kinase/metabolism , Humans , Molecular Sequence Data , Pancreatitis-Associated Proteins , Phosphatidate Phosphatase/metabolism , Trypanosoma cruzi/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...