Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 8387, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32433563

ABSTRACT

Cardiac tissue engineering strategies have the potential to regenerate functional myocardium following myocardial infarction. In this study, we utilized novel electrospun fibrin microfiber sheets of different stiffnesses (50.0 ± 11.2 kPa and 90.0 ± 16.4 kPa) to engineer biomimetic models of vascularized cardiac tissues. We characterized tissue assembly, electrophysiology, and contractility of neonatal rat ventricular cardiomyocytes (NRVCMs) cultured on these sheets. NRVCMs cultured on the softer substrates displayed higher conduction velocities (CVs) and improved electrophysiological properties. Human umbilical vein endothelial cells (HUVECs) formed dense networks on the sheets when co-cultured with human adipose-derived stem/stromal cells (hASCs). To achieve vascularized cardiac tissues, we tested various tri-culture protocols of NRVCM:hASC:HUVEC and found that a ratio of 1,500,000:37,500:150,000 cells/cm2 enabled the formation of robust endothelial networks while retaining statistically identical electrophysiological characteristics to NRVCM-only cultures. Tri-cultures at this ratio on 90 kPa substrates exhibited average CVs of 14 ± 0.6 cm/s, Action Potential Duration (APD)80 and APD30 of 152 ± 11 ms and 71 ± 6 ms, respectively, and maximum capture rate (MCR) of 3.9 ± 0.7 Hz. These data indicate the significant potential of generating densely packed endothelial networks together with electrically integrated cardiac cells in vitro as a physiologic 3D cardiac model.


Subject(s)
Cardiac Electrophysiology/methods , Adipocytes/cytology , Animals , Biomimetics/methods , Endothelial Cells/cytology , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Rats , Stem Cells/cytology , Stem Cells/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism
2.
Proc Natl Acad Sci U S A ; 116(26): 12710-12719, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31182572

ABSTRACT

Despite significant research efforts, clinical practice for arterial bypass surgery has been stagnant, and engineered grafts continue to face postimplantation challenges. Here, we describe the development and application of a durable small-diameter vascular graft with tailored regenerative capacity. We fabricated small-diameter vascular grafts by electrospinning fibrin tubes and poly(ε-caprolactone) fibrous sheaths, which improved suture retention strength and enabled long-term survival. Using surface topography in a hollow fibrin microfiber tube, we enable immediate, controlled perfusion and formation of a confluent endothelium within 3-4 days in vitro with human endothelial colony-forming cells, but a stable endothelium is noticeable at 4 weeks in vivo. Implantation of acellular or endothelialized fibrin grafts with an external ultrathin poly(ε-caprolactone) sheath as an interposition graft in the abdominal aorta of a severe combined immunodeficient Beige mouse model supports normal blood flow and vessel patency for 24 weeks. Mechanical properties of the implanted grafts closely approximate the native abdominal aorta properties after just 1 week in vivo. Fibrin mediated cellular remodeling, stable tunica intima and media formation, and abundant matrix deposition with organized collagen layers and wavy elastin lamellae. Endothelialized grafts evidenced controlled healthy remodeling with delayed and reduced macrophage infiltration alongside neo vasa vasorum-like structure formation, reduced calcification, and accelerated tunica media formation. Our studies establish a small-diameter graft that is fabricated in less than 1 week, mediates neotissue formation and incorporation into the native tissue, and matches the native vessel size and mechanical properties, overcoming main challenges in arterial bypass surgery.


Subject(s)
Biocompatible Materials/chemistry , Endothelium, Vascular/physiology , Regeneration , Vascular Grafting/methods , Animals , Arteries/physiology , Arteries/surgery , Female , Fibrin/chemistry , Mice , Polyesters/chemistry , Regional Blood Flow , Tissue Engineering/methods
3.
Cell Transplant ; 27(11): 1644-1656, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30298751

ABSTRACT

Current treatment options for volumetric muscle loss (VML) are limited due to donor site morbidity, lack of donor tissue, and insufficient functional recovery. Tissue-engineered skeletal muscle grafts offer the potential to significantly improve functional outcomes. In this study, we assessed the potential pro-myogenic effects of human adipose-derived stem cells (ASCs) seeded onto electrospun uniaxially aligned fibrin hydrogel microfiber bundles. Although both uninduced and 5-azacytidine-induced ASCs exhibited alignment, elongation, and diffuse muscle marker expression when grown on microfiber bundles for 2 months in vitro, both groups failed to fully recapitulate myotube characteristics. To assess the muscle regeneration potential of ASCs in vivo, ASC-seeded fibrin microfiber bundles were implanted in a robust murine VML defect model. Minimal fibrosis was observed surrounding implanted acellular hydrogel fibers at 2 and 4 weeks, and fibers seeded with ASCs exhibited up to 4 times higher volume retention than acellular fibers. We observed increased numbers of cells positive for the regenerating muscle marker embryonic myosin and the mature muscle marker myosin heavy chain in ASC-seeded fibers compared with acellular fibers at 1 and 3 months post-transplantation. Regenerating muscle cells were closely associated with ASC-derived cells and in some cases had potentially fused with them. These findings demonstrate that despite failing to undergo myogenesis in vitro, ASCs combined with electrospun fibrin microfibers moderately increased muscle reconstruction in vivo compared with acellular fibers following a severe VML defect.

4.
ACS Appl Mater Interfaces ; 10(17): 14559-14569, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29613762

ABSTRACT

Severe damage to the ocular surface can result in limbal stem cell (LSC) deficiency, which contributes to loss of corneal clarity, potential vision loss, chronic pain, photophobia, and keratoplasty failure. Human amniotic membrane (AM) is the most effective substrate for LSC transplantation to treat patients with LSC deficiency. However, the widespread use of the AM in the clinic remains a challenge because of the high cost for preserving freshly prepared AM and the weak mechanical strength of lyophilized AM. Here, we developed a novel composite membrane consisting of an electrospun bioabsorbable polymer fiber mesh bonded to a decellularized AM (dAM) sheet through interfacial conjugation. This membrane engineering approach drastically improved the tensile property and toughness of dAM, preserved similar levels of bioactivities as the dAM itself in supporting LSC attachment, growth, and maintenance, and retained significant anti-inflammatory capacity. These results demonstrate that the lyophilized nanofiber-dAM composite membrane offers superior mechanical properties for easy handling and suturing to the dAM, while presenting biochemical cues and basement membrane structure to facilitate LSC transplantation. This composite membrane exhibits major advantages for clinical applications in treating soft tissue damage and LSC deficiency.


Subject(s)
Nanofibers/chemistry , Amnion , Basement Membrane , Cornea , Humans
5.
Environ Sci Technol ; 51(6): 3250-3259, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28244747

ABSTRACT

Iron oxides are important structural and biogeochemical components of soils that can be strongly altered by redox-driven processes. This study examined the influence of temporal oxygen variations on Fe speciation in soils from the Luquillo Critical Zone Observatory (Puerto Rico). We incubated soils under cycles of oxic-anoxic conditions (τoxic:τanoxic = 1:6) at three frequencies with and without phosphate addition. Fe(II) production, P availability, and Fe mineral composition were monitored using batch analytical and spectroscopic techniques. The rate of soil Fe(II) production increased from ∼3 to >45 mmol Fe(II) kg-1 d-1 over the experiment with a concomitant increase of an Fe(II) concentration plateau within each anoxic period. The apparent maximum in Fe(II) produced is similar in all treatments, but was hastened by P-amendment. Numerical modeling suggests the Fe(II) dynamics can be explained by the formation of a rapidly reducible Fe(III) phases derived from the progressive dissolution and re-oxidation of native Fe(III) oxides accompanied by minor increases in Fe reducer populations. The shift in Fe(III) reactivity is evident from Fe-reducibility assays using Shewanella sp., however was undetectable by chemical extractions, Mössbauer or X-ray Absorption spectroscopies. More broadly, our findings suggest Fe reduction rates are strongly coupled to redox dynamics of the recent past, and that frequent shifts in redox conditions can prime a soil for rapid Fe-reduction.


Subject(s)
Ferric Compounds/chemistry , Soil/chemistry , Forests , Iron/chemistry , Oxidation-Reduction
6.
Biotechnol Bioeng ; 113(8): 1825-37, 2016 08.
Article in English | MEDLINE | ID: mdl-26825810

ABSTRACT

In vitro engineering systems can be powerful tools for studying tissue development in response to biophysical stimuli as well as for evaluating the functionality of engineered tissue grafts. It has been challenging, however, to develop systems that adequately integrate the application of biomimetic mechanical strain to engineered tissue with the ability to assess functional outcomes in real time. The aim of this study was to design a bioreactor system capable of real-time conditioning (dynamic, uniaxial strain, and electrical stimulation) of centimeter-long 3D tissue engineered constructs simultaneously with the capacity to monitor local strains. The system addresses key limitations of uniform sample loading and real-time imaging capabilities. Our system features an electrospun fibrin scaffold, which exhibits physiologically relevant stiffness and uniaxial alignment that facilitates cell adhesion, alignment, and proliferation. We have demonstrated the capacity for directly incorporating human adipose-derived stromal/stem cells into the fibers during the electrospinning process and subsequent culture of the cell-seeded constructs in the bioreactor. The bioreactor facilitates accurate pre-straining of the 3D constructs as well as the application of dynamic and static uniaxial strains while monitoring bulk construct tensions. The incorporation of fluorescent nanoparticles throughout the scaffolds enables in situ monitoring of local strain fields using fluorescent digital image correlation techniques, since the bioreactor is imaging compatible, and allows the assessment of local sample stiffness and stresses when coupled with force sensor measurements. In addition, the system is capable of measuring the electromechanical coupling of skeletal muscle explants by applying an electrical stimulus and simultaneously measuring the force of contraction. The packaging of these technologies, biomaterials, and analytical methods into a single bioreactor system has produced a powerful tool that will enable improved engineering of functional 3D ligaments, tendons, and skeletal muscles. Biotechnol. Bioeng. 2016;113: 1825-1837. © 2016 Wiley Periodicals, Inc.


Subject(s)
Biophysics/instrumentation , Biophysics/methods , Bioreactors , Cell Culture Techniques/instrumentation , Adipose Tissue/cytology , Biocompatible Materials , Cells, Cultured , Equipment Design , Humans , Stem Cells/physiology , Tissue Engineering
7.
FASEB J ; 29(8): 3302-14, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25900808

ABSTRACT

Despite current advances in engineering blood vessels over 1 mm in diameter and the existing wealth of knowledge regarding capillary bed formation, studies for the development of microvasculature, the connecting bridge between them, have been extremely limited so far. Here, we evaluate the use of 3-dimensional (3D) microfibers fabricated by hydrogel electrospinning as templates for microvascular structure formation. We hypothesize that 3D microfibers improve extracellular matrix (ECM) deposition from vascular cells, enabling the formation of freestanding luminal multicellular microvasculature. Compared to 2-dimensional cultures, we demonstrate with confocal microscopy and RT-PCR that fibrin microfibers induce an increased ECM protein deposition by vascular cells, specifically endothelial colony-forming cells, pericytes, and vascular smooth muscle cells. These ECM proteins comprise different layers of the vascular wall including collagen types I, III, and IV, as well as elastin, fibronectin, and laminin. We further demonstrate the achievement of multicellular microvascular structures with an organized endothelium and a robust multicellular perivascular tunica media. This, along with the increased ECM deposition, allowed for the creation of self-supporting multilayered microvasculature with a distinct circular lumen following fibrin microfiber core removal. This approach presents an advancement toward the development of human microvasculature for basic and translational studies.


Subject(s)
Microfibrils/metabolism , Microvessels/physiology , Cells, Cultured , Collagen/metabolism , Elastin/metabolism , Endothelial Cells/metabolism , Endothelial Cells/physiology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Fibrin/metabolism , Fibronectins/metabolism , Humans , Laminin , Microvessels/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology
8.
Biomaterials ; 35(10): 3243-51, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24439410

ABSTRACT

Hydrogels have been widely used for 3-dimensional (3D) cell culture and tissue regeneration due to their tunable biochemical and physicochemical properties as well as their high water content, which resembles the aqueous microenvironment of the natural extracellular matrix. While many properties of natural hydrogel matrices are modifiable, their intrinsic isotropic structure limits the control over cellular organization, which is critical to restore tissue function. Here we report a generic approach to incorporate alignment topography inside the hydrogel matrix using a combination of electrical and mechanical stretching. Hydrogel fibres with uniaxial alignment were prepared from aqueous solutions of natural polymers such as alginate, fibrin, gelatin, and hyaluronic acid under ambient conditions. The unique internal alignment feature drastically enhances the mechanical properties of the hydrogel microfibres. Furthermore, the facile, organic solvent-free processing conditions are amenable to the incorporation of live cells within the hydrogel fibre or on the fibre surface; both approaches effectively induce cellular alignment. This work demonstrates a versatile and scalable strategy to create aligned hydrogel microfibres from various natural polymers.


Subject(s)
Hydrogels/chemistry , Polymers/chemistry , Biocompatible Materials , Cellular Microenvironment , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Scattering, Small Angle
9.
PLoS One ; 8(11): e81061, 2013.
Article in English | MEDLINE | ID: mdl-24278378

ABSTRACT

In microvascular vessels, endothelial cells are aligned longitudinally whereas several components of the extracellular matrix (ECM) are organized circumferentially. While current three-dimensional (3D) in vitro models for microvasculature have allowed the study of ECM-regulated tubulogenesis, they have limited control over topographical cues presented by the ECM and impart a barrier for the high-resolution and dynamic study of multicellular and extracellular organization. Here we exploit a 3D fibrin microfiber scaffold to develop a novel in vitro model of the microvasculature that recapitulates endothelial alignment and ECM deposition in a setting that also allows the sequential co-culture of mural cells. We show that the microfibers' nanotopography induces longitudinal adhesion and alignment of endothelial colony-forming cells (ECFCs), and that these deposit circumferentially organized ECM. We found that ECM wrapping on the microfibers is independent of ECFCs' actin and microtubule organization, but it is dependent on the curvature of the microfiber. Microfibers with smaller diameters (100-400 µm) guided circumferential ECM deposition, whereas microfibers with larger diameters (450 µm) failed to support wrapping ECM. Finally, we demonstrate that vascular smooth muscle cells attached on ECFC-seeded microfibers, depositing collagen I and elastin. Collectively, we establish a novel in vitro model for the sequential control and study of microvasculature development and reveal the unprecedented role of the endothelium in organized ECM deposition regulated by the microfiber curvature.


Subject(s)
Extracellular Matrix/metabolism , In Vitro Techniques , Microvessels/physiology , Cell Adhesion , Cell Culture Techniques , Endothelial Cells/metabolism , Fibrin , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Stem Cells/metabolism , Tissue Scaffolds
10.
J Theor Biol ; 265(4): 554-64, 2010 Aug 21.
Article in English | MEDLINE | ID: mdl-20493885

ABSTRACT

The offspring of closely related parents often suffer from inbreeding depression, sometimes resulting in a slower growth rate for inbred offspring relative to non-inbred offspring. Previous research has shown that some of the slower growth rate of inbred organisms can be attributed to the inbred organisms' increased levels of protein turnover. This paper attempts to show that the higher levels of protein turnover among inbred organisms can be attributed to accumulations of misfolded and aggregated proteins that require degradation by the inbred organisms' protein quality control systems. The accumulation of misfolded and aggregated proteins within inbred organisms are the result of more negative free energies of folding for proteins encoded at homozygous gene loci and higher concentrations of potentially aggregating non-native protein species within the cell. The theory presented here makes several quantitative predictions that suggest a connection between protein misfolding/aggregation and polyploidy that can be tested by future research.


Subject(s)
Heterozygote , Protein Folding , Proteins/genetics , Proteins/metabolism , Animals , Kinetics , Polyploidy , Protein Binding , Protein Structure, Quaternary , Proteins/chemistry , Thermodynamics
11.
Environ Sci Technol ; 44(5): 1602-9, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20131792

ABSTRACT

The adhesion of dissimilatory metal reducing bacteria (DMRB) to iron (oxy)(hydr)oxides may play an important role in their respiration on ferric iron-containing minerals, but few quantitative surface cell density measurements have been made thus far. We used confocal microscopy to examine the adhesion of a common DMRB species, Shewanella oneidensis MR-1, onto iron (oxy)(hydr)oxide particulate-coated glass slides across a broad range of bulk (i.e., solution phase) cell densities from 10(5) cells/mL to 2 x 10(9) cells/mL. At bulk cell densities less than 1 x 10(7) cells/mL, cells adhered to the slide surface formed an evenly distributed, homogeneous monolayer, while at the bulk cell densities higher than 2 x 10(8) cells/mL the adhered cells formed distinct microcolonies. As a result of this complex adhesion behavior, simple Langmuir or Freundlich adsorption isotherms do not capture the relationship between the surface cell density and the bulk cell density over the entire range of bulk cell densities. Thus a new, two-step isotherm was developed that incorporated both isolated attached cells at low cell densities as well as microcolonies at higher cell densities.


Subject(s)
Bacterial Adhesion/physiology , Ferric Compounds/metabolism , Shewanella/physiology , Adsorption , Cell Division , Culture Media , Gene Expression Regulation, Bacterial , Glass , Microscopy, Confocal , Oxidation-Reduction , Oxygen Consumption , Shewanella/cytology , Shewanella/genetics , Shewanella/growth & development , Thermodynamics
12.
Environ Sci Technol ; 44(1): 68-73, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20039735

ABSTRACT

The facultative anaerobe Shewanella oneidensis MR-1 respires a variety of anaerobic electron acceptors, including insoluble Fe(III) oxides. S. oneidensis employs a number of novel strategies for respiration of insoluble Fe(III) oxides, including localization of respiratory proteins to the cell outer membrane (OM). The molecular mechanism by which S. oneidensis adheres to and respires Fe(III) oxides, however, remains poorly understood. In the present study, whole cell fractionation and MALDI-TOF-MS/MS techniques were combined to identify a serine protease (SO3800) associated with the S. oneidensis OM. SO3800 contained predicted structural motifs similar to cell surface-associated serine proteases that function as bacterial adhesins in other gram-negative bacteria. The gene encoding SO3800 was deleted from the S. oneidensis genome, and the resulting mutant strain (DeltaSO3800) was tested for its ability to adhere to and respire Fe(III) oxides. DeltaSO3800 was severely impaired in its ability to adhere to Fe(III) oxides, yet retained wild-type Fe(III) respiratory capability. Laser Doppler velocimetry and cryoetch high-resolution SEM experiments indicated that DeltaSO3800 displayed a lower cell surface charge and higher amount of surface-associated exopolysaccharides. Results of this study indicate that S. oneidensis may respire insoluble Fe(III) oxides at a distance, negating the requirement for attachment prior to electron transfer.


Subject(s)
Bacterial Adhesion , Bacterial Outer Membrane Proteins/metabolism , Ferric Compounds/metabolism , Serine Proteases/metabolism , Shewanella/physiology , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Mutagenesis , Shewanella/enzymology , Shewanella/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
13.
Science ; 322(5906): 1374-7, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-19039134

ABSTRACT

Calcium concentrations are now commonly declining in softwater boreal lakes. Although the mechanisms leading to these declines are generally well known, the consequences for the aquatic biota have not yet been reported. By examining crustacean zooplankton remains preserved in lake sediment cores, we document near extirpations of calcium-rich Daphnia species, which are keystone herbivores in pelagic food webs, concurrent with declining lake-water calcium. A large proportion (62%, 47 to 81% by region) of the Canadian Shield lakes we examined has a calcium concentration approaching or below the threshold at which laboratory Daphnia populations suffer reduced survival and fecundity. The ecological impacts of environmental calcium loss are likely to be both widespread and pronounced.


Subject(s)
Calcium/analysis , Daphnia/physiology , Ecosystem , Fresh Water/chemistry , Zooplankton/physiology , Animals , Food Chain , Geologic Sediments , Hydrogen-Ion Concentration , Ontario , Population Dynamics , Reproduction
14.
Ground Water ; 42(3): 338-46, 2004.
Article in English | MEDLINE | ID: mdl-15161151

ABSTRACT

Exchange of water between conduits and matrix is an important control on regional chemical compositions, karstification, and quality of ground water resources in karst aquifers. A sinking stream (Santa Fe River Sink) and its resurgence (River Rise) in the unconfined portion of the Floridan Aquifer provide the opportunity to monitor conduit inflow and outflow. The use of temperature as a tracer allows determination of residence times and velocities through the conduit system. Based on temperature records from two high water events, flow is reasonably represented as pipe flow with a cross-sectional area of 380 m2, although this model may be complicated by losses of water from the conduit system at higher discharge rates. Over the course of the study year, the River Rise discharged a total of 1.9 x 10(7) m3 more water than entered the River Sink, reflecting net contribution of ground water from the matrix into the conduit system. However, as River Sink discharge rates peaked following three rainfall events during the study period, the conduit system lost water, presumably into the matrix. Surface water in high flow events is typically undersaturated with respect to calcite and thus may lead to dissolution, depending on its residence time in the matrix. A calculation of local denudation is larger than other regional estimates, perhaps reflecting return of water to conduits before calcite equilibrium is reached. The exchange of matrix and conduit water is an important variable in karst hydrology that should be considered in management of these water resources.


Subject(s)
Water Supply , Water/chemistry , Environmental Monitoring , Florida , Temperature , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...