Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Function (Oxf) ; 3(3): zqac020, 2022.
Article in English | MEDLINE | ID: mdl-35620477

ABSTRACT

ß-adrenergic receptor (ß-AR) signaling in cardiac myocytes is central to cardiac function, but spatiotemporal activation within myocytes is unresolved. In rabbit ventricular myocytes, ß-AR agonists or high extracellular [Ca] were applied locally at one end, to measure ß-AR signal propagation as Ca-transient (CaT) amplitude and sarcoplasmic reticulum (SR) Ca uptake. High local [Ca]o, increased CaT amplitude under the pipette faster than did ISO, but was also more spatially restricted. Local isoproterenol (ISO) or norepinephrine (NE) increased CaT amplitude and SR Ca uptake, that spread along the myocyte to the unexposed end. Thus, local [Ca]i decline kinetics reflect spatio-temporal progression of ß-AR end-effects in myocytes. To test whether intracellular ß-ARs contribute to this response, we used ß-AR-blockers that are membrane permeant (propranolol) or not (sotalol). Propranolol completely blocked NE-dependent CaT effects. However, blocking surface ß-ARs only (sotalol) suppressed only ∼50% of the NE-induced increase in CaT peak and rate of [Ca]i decline, but these changes spread more gradually than NE alone. We also tested whether A-kinase anchoring protein 7γ (AKAP7γ; that interacts with phospholamban) is mobile, such that it might contribute to intracellular spatial propagation of ß-AR signaling. We found AKAP7γ to be highly mobile using fluorescence recovery after photobleach of GFP tagged AKAP7γ, and that PKA activation accelerated AKAP7γ-GFP wash-out upon myocyte saponin-permeabilization, suggesting increased AKAP7γ mobility. We conclude that local ß-AR activation can activate SR Ca uptake at remote myocyte sites, and that intracellular ß-AR and AKAP7γ mobility may play a role in this spread of activation.


Subject(s)
Calcium , Myocytes, Cardiac , Animals , Rabbits , Adrenergic Agents/metabolism , Calcium/metabolism , Calcium Signaling , Calcium, Dietary/metabolism , Isoproterenol/pharmacology , Propranolol/metabolism , Receptors, Adrenergic, beta , Sotalol/metabolism , Adaptor Proteins, Signal Transducing/metabolism
2.
J Mol Cell Cardiol ; 168: 13-23, 2022 07.
Article in English | MEDLINE | ID: mdl-35405106

ABSTRACT

A key therapeutic target for heart failure and arrhythmia is the deleterious leak through sarcoplasmic reticulum (SR) ryanodine receptor 2 (RyR2) calcium release channels. We have previously developed methods to detect the pathologically leaky state of RyR2 in adult cardiomyocytes by monitoring RyR2 binding to either calmodulin (CaM) or a biosensor peptide (DPc10). Here, we test whether these complementary binding measurements are effective as high-throughput screening (HTS) assays to discover small molecules that target leaky RyR2. Using FRET, we developed and validated HTS procedures under conditions that mimic a pathological state, to screen the library of 1280 pharmaceutically active compounds (LOPAC) for modulators of RyR2 in cardiac SR membrane preparations. Complementary FRET assays with acceptor-labeled CaM and DPc10 were used for Hit prioritization based on the opposing binding properties of CaM vs. DPc10. This approach narrowed the Hit list to one compound, Ro 90-7501, which altered FRET to suggest increased RyR2-CaM binding and decreased DPc10 binding. Follow-up studies revealed that Ro 90-7501 does not detrimentally affect myocyte Ca2+ transients. Moreover, Ro 90-7501 partially inhibits overall Ca2+ leak, as assessed by Ca2+ sparks in permeabilized rat cardiomyocytes. Together, these results demonstrate (1) the effectiveness of our HTS approach where two complementary assays synergize for Hit ranking and (2) a drug discovery process that combines high-throughput, high-precision in vitro structural assays with in situ myocyte assays of the pathologic RyR2 leak. These provide a drug discovery platform compatible with large-scale HTS campaigns, to identify agents that inhibit RyR2 for therapeutic development.


Subject(s)
Fluorescence Resonance Energy Transfer , Ryanodine Receptor Calcium Release Channel , Animals , Calcium/metabolism , Calmodulin/metabolism , Drug Discovery , Fluorescence Resonance Energy Transfer/methods , Myocytes, Cardiac/metabolism , Rats , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Tacrolimus Binding Proteins/metabolism
3.
iScience ; 25(1): 103624, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35005560

ABSTRACT

The mammalian heart beats incessantly with rhythmic mechanical activities generating acids that need to be buffered to maintain a stable intracellular pH (pHi) for normal cardiac function. Even though spatial pHi non-uniformity in cardiomyocytes has been documented, it remains unknown how pHi is regulated to match the dynamic cardiac contractions. Here, we demonstrated beat-to-beat intracellular acidification, termed pHi transients, in synchrony with cardiomyocyte contractions. The pHi transients are regulated by pacing rate, Cl-/HCO3 - transporters, pHi buffering capacity, and ß-adrenergic signaling. Mitochondrial electron-transport chain inhibition attenuates the pHi transients, implicating mitochondrial activity in sculpting the pHi regulation. The pHi transients provide dynamic alterations of H+ transport required for ATP synthesis, and a decrease in pHi may serve as a negative feedback to cardiac contractions. Current findings dovetail with the prevailing three known dynamic systems, namely electrical, Ca2+, and mechanical systems, and may reveal broader features of pHi handling in excitable cells.

4.
Basic Res Cardiol ; 116(1): 58, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34648073

ABSTRACT

Cardiomyocyte Na+ and Ca2+ mishandling, upregulated Ca2+/calmodulin-dependent kinase II (CaMKII), and increased reactive oxygen species (ROS) are characteristics of various heart diseases, including heart failure (HF), long QT (LQT) syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). These changes may form a vicious cycle of positive feedback to promote cardiac dysfunction and arrhythmias. In HF rabbit cardiomyocytes investigated in this study, the inhibition of CaMKII, late Na+ current (INaL), and leaky ryanodine receptors (RyRs) all attenuated the prolongation and increased short-term variability (STV) of action potential duration (APD), but in age-matched controls these inhibitors had no or minimal effects. In control cardiomyocytes, we enhanced RyR leak (by low [caffeine] plus isoproterenol mimicking CPVT) which markedly increased STV and delayed afterdepolarizations (DADs). These proarrhythmic changes were significantly attenuated by both CaMKII inhibition and mitochondrial ROS scavenging, with a slight synergy with INaL inhibition. Inducing LQT by elevating INaL (by Anemone toxin II, ATX-II) caused markedly prolonged APD, increased STV, and early afterdepolarizations (EADs). Those proarrhythmic ATX-II effects were largely attenuated by mitochondrial ROS scavenging, and partially reduced by inhibition of CaMKII and pathological leaky RyRs using dantrolene. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) bearing LQT3 mutation SCN5A N406K, dantrolene significantly attenuated cell arrhythmias and APD prolongation. Targeting critical components of the Na+-Ca2+-CaMKII-ROS-INaL arrhythmogenic vicious cycle may exhibit important on-target and also trans-target effects (e.g., INaL and RyR inhibition can alter INaL-mediated LQT3 effects). Incorporating this vicious cycle into therapeutic strategies provides novel integrated insight for treating cardiac arrhythmias and diseases.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Induced Pluripotent Stem Cells , Action Potentials , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Pregnancy , Rabbits , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel
5.
Cell Rep ; 32(3): 107925, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32697997

ABSTRACT

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have enormous potential for the study of human cardiac disorders. However, their physiological immaturity severely limits their utility as a model system and their adoption for drug discovery. Here, we describe maturation media designed to provide oxidative substrates adapted to the metabolic needs of human iPSC (hiPSC)-CMs. Compared with conventionally cultured hiPSC-CMs, metabolically matured hiPSC-CMs contract with greater force and show an increased reliance on cardiac sodium (Na+) channels and sarcoplasmic reticulum calcium (Ca2+) cycling. The media enhance the function, long-term survival, and sarcomere structures in engineered heart tissues. Use of the maturation media made it possible to reliably model two genetic cardiac diseases: long QT syndrome type 3 due to a mutation in the cardiac Na+ channel SCN5A and dilated cardiomyopathy due to a mutation in the RNA splicing factor RBM20. The maturation media should increase the fidelity of hiPSC-CMs as disease models.


Subject(s)
Culture Media/pharmacology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Calcium/metabolism , Cardiac Conduction System Disease/genetics , Cardiac Conduction System Disease/physiopathology , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/physiopathology , Gene Expression Regulation/drug effects , Heart/drug effects , Heart/physiopathology , Humans , Induced Pluripotent Stem Cells/drug effects , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Membrane Potentials/drug effects , Models, Biological , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Phenotype , Tissue Engineering
6.
J Cell Biol ; 218(12): 4141-4156, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31601621

ABSTRACT

Niemann-Pick type C1 (NPC1) protein is essential for the transport of externally derived cholesterol from lysosomes to other organelles. Deficiency of NPC1 underlies the progressive NPC1 neurodegenerative disorder. Currently, there are no curative therapies for this fatal disease. Given the Ca2+ hypothesis of neurodegeneration, which posits that altered Ca2+ dynamics contribute to neuropathology, we tested if disease mutations in NPC1 alter Ca2+ signaling and neuronal plasticity. We determine that NPC1 inhibition or disease mutations potentiate store-operated Ca2+ entry (SOCE) due to a presenilin 1 (PSEN1)-dependent reduction in ER Ca2+ levels alongside elevated expression of the molecular SOCE components ORAI1 and STIM1. Associated with this dysfunctional Ca2+ signaling is destabilization of neuronal dendritic spines. Knockdown of PSEN1 or inhibition of the SREBP pathway restores Ca2+ homeostasis, corrects differential protein expression, reduces cholesterol accumulation, and rescues spine density. These findings highlight lysosomes as a crucial signaling platform responsible for tuning ER Ca2+ signaling, SOCE, and synaptic architecture in health and disease.


Subject(s)
Calcium Signaling , Endoplasmic Reticulum/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neuronal Plasticity , Animals , Carrier Proteins/metabolism , Cholesterol/metabolism , Dendritic Spines/metabolism , Fibroblasts/metabolism , Hippocampus/cytology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Mutation , Neoplasm Proteins/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Niemann-Pick C1 Protein , ORAI1 Protein/metabolism , Presenilin-1/metabolism , Signal Transduction , Stromal Interaction Molecule 1/metabolism , Synapses/metabolism
7.
Circ Arrhythm Electrophysiol ; 12(3): e007061, 2019 03.
Article in English | MEDLINE | ID: mdl-30879336

ABSTRACT

BACKGROUND: Heart failure (HF) is characterized by electrophysiological remodeling resulting in increased risk of cardiac arrhythmias. Previous reports suggest that elevated inward ionic currents in HF promote action potential (AP) prolongation, increased short-term variability of AP repolarization, and delayed afterdepolarizations. However, the underlying changes in late Na+ current (INaL), L-type Ca2+ current, and NCX (Na+/Ca2+ exchanger) current are often measured in nonphysiological conditions (square-pulse voltage clamp, slow pacing rates, exogenous Ca2+ buffers). METHODS: We measured the major inward currents and their Ca2+- and ß-adrenergic dependence under physiological AP clamp in rabbit ventricular myocytes in chronic pressure/volume overload-induced HF (versus age-matched control). RESULTS: AP duration and short-term variability of AP repolarization were increased in HF, and importantly, inhibition of INaL decreased both parameters to the control level. INaL was slightly increased in HF versus control even when intracellular Ca2+ was strongly buffered. But under physiological AP clamp with normal Ca2+ cycling, INaL was markedly upregulated in HF versus control (dependent largely on CaMKII [Ca2+/calmodulin-dependent protein kinase II] activity). ß-Adrenergic stimulation (often elevated in HF) further enhanced INaL. L-type Ca2+ current was decreased in HF when Ca2+ was buffered, but CaMKII-mediated Ca2+-dependent facilitation upregulated physiological L-type Ca2+ current to the control level. Furthermore, L-type Ca2+ current response to ß-adrenergic stimulation was significantly attenuated in HF. Inward NCX current was upregulated at phase 3 of AP in HF when assessed by combining experimental data and computational modeling. CONCLUSIONS: Our results suggest that CaMKII-dependent upregulation of INaL in HF significantly contributes to AP prolongation and increased short-term variability of AP repolarization, which may lead to increased arrhythmia propensity, and is further exacerbated by adrenergic stress.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/etiology , Calcium Signaling , Heart Failure/metabolism , Heart Rate , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Sodium/metabolism , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Calcium Channels, L-Type/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Computer Simulation , Disease Models, Animal , Heart Failure/complications , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Male , Models, Cardiovascular , Rabbits , Risk Factors , Time Factors
8.
Proc Natl Acad Sci U S A ; 115(13): E3036-E3044, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531045

ABSTRACT

Heart failure (HF) following myocardial infarction (MI) is associated with high incidence of cardiac arrhythmias. Development of therapeutic strategy requires detailed understanding of electrophysiological remodeling. However, changes of ionic currents in ischemic HF remain incompletely understood, especially in translational large-animal models. Here, we systematically measure the major ionic currents in ventricular myocytes from the infarct border and remote zones in a porcine model of post-MI HF. We recorded eight ionic currents during the cell's action potential (AP) under physiologically relevant conditions using selfAP-clamp sequential dissection. Compared with healthy controls, HF-remote zone myocytes exhibited increased late Na+ current, Ca2+-activated K+ current, Ca2+-activated Cl- current, decreased rapid delayed rectifier K+ current, and altered Na+/Ca2+ exchange current profile. In HF-border zone myocytes, the above changes also occurred but with additional decrease of L-type Ca2+ current, decrease of inward rectifier K+ current, and Ca2+ release-dependent delayed after-depolarizations. Our data reveal that the changes in any individual current are relatively small, but the integrated impacts shift the balance between the inward and outward currents to shorten AP in the border zone but prolong AP in the remote zone. This differential remodeling in post-MI HF increases the inhomogeneity of AP repolarization, which may enhance the arrhythmogenic substrate. Our comprehensive findings provide a mechanistic framework for understanding why single-channel blockers may fail to suppress arrhythmias, and highlight the need to consider the rich tableau and integration of many ionic currents in designing therapeutic strategies for treating arrhythmias in HF.


Subject(s)
Action Potentials/physiology , Arrhythmias, Cardiac/physiopathology , Calcium/metabolism , Electrophysiological Phenomena , Heart Failure/physiopathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/physiology , Animals , Cells, Cultured , Myocytes, Cardiac/cytology , Swine
9.
Circ Arrhythm Electrophysiol ; 11(2): e005852, 2018 02.
Article in English | MEDLINE | ID: mdl-29437761

ABSTRACT

BACKGROUND: Electrophysiological remodeling and increased susceptibility for cardiac arrhythmias are hallmarks of heart failure (HF). Ventricular action potential duration (APD) is typically prolonged in HF, with reduced repolarization reserve. However, underlying K+ current changes are often measured in nonphysiological conditions (voltage clamp, low pacing rates, cytosolic Ca2+ buffers). METHODS AND RESULTS: We measured the major K+ currents (IKr, IKs, and IK1) and their Ca2+- and ß-adrenergic dependence in rabbit ventricular myocytes in chronic pressure/volume overload-induced HF (versus age-matched controls). APD was significantly prolonged only at lower pacing rates (0.2-1 Hz) in HF under physiological ionic conditions and temperature. However, when cytosolic Ca2+ was buffered, APD prolongation in HF was also significant at higher pacing rates. Beat-to-beat variability of APD was also significantly increased in HF. Both IKr and IKs were significantly upregulated in HF under action potential clamp, but only when cytosolic Ca2+ was not buffered. CaMKII (Ca2+/calmodulin-dependent protein kinase II) inhibition abolished IKs upregulation in HF, but it did not affect IKr. IKs response to ß-adrenergic stimulation was also significantly diminished in HF. IK1 was also decreased in HF regardless of Ca2+ buffering, CaMKII inhibition, or ß-adrenergic stimulation. CONCLUSIONS: At baseline Ca2+-dependent upregulation of IKr and IKs in HF counterbalances the reduced IK1, maintaining repolarization reserve (especially at higher heart rates) in physiological conditions, unlike conditions of strong cytosolic Ca2+ buffering. However, under ß-adrenergic stimulation, reduced IKs responsiveness severely limits integrated repolarizing K+ current and repolarization reserve in HF. This would increase arrhythmia propensity in HF, especially during adrenergic stress.


Subject(s)
Action Potentials/physiology , Adrenergic beta-Agonists/pharmacology , Calcium/metabolism , Heart Failure/metabolism , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Potassium/pharmacokinetics , Animals , Disease Models, Animal , Heart Failure/pathology , Heart Failure/physiopathology , Heart Ventricles/drug effects , Heart Ventricles/pathology , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Potassium/metabolism , Rabbits
10.
Circ Res ; 122(6): 821-835, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29352041

ABSTRACT

RATIONALE: Atrial fibrillation (AF) is the most common arrhythmia, and advanced age is an inevitable and predominant AF risk factor. However, the mechanisms that couple aging and AF propensity remain unclear, making targeted therapeutic interventions unattainable. OBJECTIVE: To explore the functional role of an important stress response JNK (c-Jun N-terminal kinase) in sarcoplasmic reticulum Ca2+ handling and consequently Ca2+-mediated atrial arrhythmias. METHODS AND RESULTS: We used a series of cutting-edge electrophysiological and molecular techniques, exploited the power of transgenic mouse models to detail the molecular mechanism, and verified its clinical applicability in parallel studies on donor human hearts. We discovered that significantly increased activity of the stress response kinase JNK2 (JNK isoform 2) in the aged atria is involved in arrhythmic remodeling. The JNK-driven atrial proarrhythmic mechanism is supported by a pathway linking JNK, CaMKII (Ca2+/calmodulin-dependent kinase II), and sarcoplasmic reticulum Ca2+ release RyR2 (ryanodine receptor) channels. JNK2 activates CaMKII, a critical proarrhythmic molecule in cardiac muscle. In turn, activated CaMKII upregulates diastolic sarcoplasmic reticulum Ca2+ leak mediated by RyR2 channels. This leads to aberrant intracellular Ca2+ waves and enhanced AF propensity. In contrast, this mechanism is absent in young atria. In JNK challenged animal models, this is eliminated by JNK2 ablation or CaMKII inhibition. CONCLUSIONS: We have identified JNK2-driven CaMKII activation as a novel mode of kinase crosstalk and a causal factor in atrial arrhythmic remodeling, making JNK2 a compelling new therapeutic target for AF prevention and treatment.


Subject(s)
Atrial Fibrillation/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Animals , Calcium Signaling , Cell Line , Cells, Cultured , Humans , Male , Mice , Rabbits , Ryanodine Receptor Calcium Release Channel/metabolism
11.
Circ Res ; 121(12): 1379-1391, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-28970285

ABSTRACT

RATIONALE: Intercellular uncoupling and Ca2+ (Ca) mishandling can initiate triggered ventricular arrhythmias. Spontaneous Ca release activates inward current which depolarizes membrane potential (Vm) and can trigger action potentials in isolated myocytes. However, cell-cell coupling in intact hearts limits local depolarization and may protect hearts from this arrhythmogenic mechanism. Traditional optical mapping lacks the spatial resolution to assess coupling of individual myocytes. OBJECTIVE: We investigate local intercellular coupling in Ca-induced depolarization in intact hearts, using confocal microscopy to measure local Vm and intracellular [Ca] simultaneously. METHODS AND RESULTS: We used isolated Langendorff-perfused hearts from control (CTL) and heart failure (HF) mice (HF induced by transaortic constriction). In CTL hearts, 1.4% of myocytes were poorly synchronized with neighboring cells and exhibited asynchronous (AS) Ca transients. These AS myocytes were much more frequent in HF (10.8% of myocytes, P<0.05 versus CTL). Local Ca waves depolarized Vm in HF but not CTL hearts, suggesting weaker gap junction coupling in HF-AS versus CTL-AS myocytes. Cell-cell coupling was assessed by calcein fluorescence recovery after photobleach during intracellular [Ca] recording. All regions in CTL hearts exhibited faster calcein diffusion than in HF, with HF-AS myocyte being slowest. In HF-AS, enhancing gap junction conductance (with rotigaptide) increased coupling and suppressed Vm depolarization during Ca waves. Conversely, in CTL hearts, gap junction inhibition (carbenoxolone) decreased coupling and allowed Ca wave-induced depolarizations. Synchronization of Ca wave initiation and triggered action potentials were observed in HF hearts and computational models. CONCLUSIONS: Well-coupled CTL myocytes are effectively voltage-clamped during Ca waves, protecting the heart from triggered arrhythmias. Spontaneous Ca waves are much more common in HF myocytes and these AS myocytes are also poorly coupled, enabling local Ca-induced inward current of sufficient source strength to overcome a weakened current sink to depolarize Vm and trigger action potentials.


Subject(s)
Calcium Signaling , Excitation Contraction Coupling , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , Action Potentials , Animals , Cells, Cultured , Gap Junctions/metabolism , Heart Failure/physiopathology , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/physiology
12.
J Physiol ; 595(7): 2253-2268, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28008618

ABSTRACT

KEY POINTS: [Ca2+ ]i enhanced rabbit ventricular slowly activating delayed rectifier K+ current (IKs ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K+ current (IKr ) amplitude and voltage dependence were unaffected by high [Ca2+ ]i . When measuring or simulating IKs during an action potential, IKs was not different during a physiological Ca2+ transient or when [Ca2+ ]i was buffered to 500 nm. ABSTRACT: The slowly activating delayed rectifier K+ current (IKs ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca2+ ([Ca2+ ]i ) and ß-adrenergic receptor (ß-AR) stimulation modulate IKs amplitude and kinetics, but details of these important IKs regulators and their interaction are limited. We assessed the [Ca2+ ]i dependence of IKs in steady-state conditions and with dynamically changing membrane potential and [Ca2+ ]i during an AP. IKs was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca2+ ]i , we found that raising [Ca2+ ]i from 100 to 600 nm produced similar increases in IKs as did ß-AR activation, and the effects appeared additive. Both ß-AR activation and high [Ca2+ ]i increased maximally activated tail IKs , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, IKs recorded during a normal physiological Ca2+ transient was similar to IKs measured with [Ca2+ ]i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca2+ ]i regulates IKs amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca2+ ]i , in the submembrane or junctional cleft space, is not required to maximize [Ca2+ ]i -dependent IKs activation during normal Ca2+ transients.


Subject(s)
Calcium/physiology , Delayed Rectifier Potassium Channels/physiology , Myocytes, Cardiac/physiology , Action Potentials , Animals , Heart Ventricles , Male , Models, Biological
13.
Circ Res ; 119(8): 931-43, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27576469

ABSTRACT

RATIONALE: In heart failure, myofilament proteins display abnormal phosphorylation, which contributes to contractile dysfunction. The mechanisms underlying the dysregulation of protein phosphorylation on myofilaments is not clear. OBJECTIVE: This study aims to understand the mechanisms underlying altered phosphorylation of myofilament proteins in heart failure. METHODS AND RESULTS: We generate a novel genetically encoded protein kinase A (PKA) biosensor anchored onto the myofilaments in rabbit cardiac myocytes to examine PKA activity at the myofilaments in responses to adrenergic stimulation. We show that PKA activity is shifted from the sarcolemma to the myofilaments in hypertrophic failing rabbit myocytes. In particular, the increased PKA activity on the myofilaments is because of an enhanced ß2 adrenergic receptor signal selectively directed to the myofilaments together with a reduced phosphodiesterase activity associated with the myofibrils. Mechanistically, the enhanced PKA activity on the myofilaments is associated with downregulation of caveolin-3 in the hypertrophic failing rabbit myocytes. Reintroduction of caveolin-3 in the failing myocytes is able to normalize the distribution of ß2 adrenergic receptor signal by preventing PKA signal access to the myofilaments and to restore contractile response to adrenergic stimulation. CONCLUSIONS: In hypertrophic rabbit myocytes, selectively enhanced ß2 adrenergic receptor signaling toward the myofilaments contributes to elevated PKA activity and PKA phosphorylation of myofilament proteins. Reintroduction of caveolin-3 is able to confine ß2 adrenergic receptor signaling and restore myocyte contractility in response to ß adrenergic stimulation.


Subject(s)
Biosensing Techniques/methods , Cyclic AMP-Dependent Protein Kinases/metabolism , Heart Failure/enzymology , Heart Failure/genetics , Myofibrils/enzymology , Myofibrils/genetics , Animals , Cells, Cultured , Myocytes, Cardiac/enzymology , Phosphorylation/physiology , Rabbits
14.
Biophys J ; 107(6): 1313-7, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25229139

ABSTRACT

The diastolic membrane potential (Vm) can be hyperpolarized or depolarized by various factors such as hyperkalemia or hypokalemia in the long term, or by delayed afterdepolarizations in the short term. In this study, we investigate how Vm affects Ca sparks and waves. We use a physiologically detailed mathematical model to investigate individual factors that affect Ca spark generation and wave propagation. We focus on the voltage range of -90 ∼ -70 mV, which is just below the Vm for sodium channel activation. We find that Vm depolarization promotes Ca wave propagation and hyperpolarization prevents it. This finding is directly validated in voltage clamp experiments with Ca waves using isolated rat ventricular myocytes. Ca transport by the sodium-calcium exchanger (NCX) is determined by Vm as well as Na and Ca concentrations. Depolarized Vm reduces NCX-mediated efflux, elevating [Ca]i, and thus promoting Ca wave propagation. Moreover, depolarized Vm promotes spontaneous Ca releases that can cause initiation of multiple Ca waves. This indicates that during delayed afterdepolarizations, Ca release units (CRUs) interact with not just the immediately adjacent CRUs via Ca diffusion, but also further CRUs via fast (∼0.1 ms) changes in Vm mediated by the voltage and Ca-sensitive NCX. This may contribute significantly to synchronization of Ca waves among multiple cells in tissue.


Subject(s)
Calcium Signaling , Membrane Potentials , Myocytes, Cardiac/cytology , Animals , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley , Sodium-Calcium Exchanger/metabolism
15.
Basic Res Cardiol ; 108(3): 344, 2013 May.
Article in English | MEDLINE | ID: mdl-23553082

ABSTRACT

The histidine-rich Ca(2+)-binding protein (HRC) is located in the lumen of the sarcoplasmic reticulum (SR) and exhibits high-capacity Ca(2+)-binding properties. Overexpression of HRC in the heart resulted in impaired SR Ca(2+) uptake and depressed relaxation through its interaction with SERCA2a. However, the functional significance of HRC in overall regulation of calcium cycling and contractility is not currently well defined. To further elucidate the role of HRC in vivo under physiological and pathophysiological conditions, we generated and characterized HRC-knockout (KO) mice. The KO mice were morphologically and histologically normal compared to wild-type (WT) mice. At the cellular level, ablation of HRC resulted in significantly enhanced contractility, Ca(2+) transients, and maximal SR Ca(2+) uptake rates in the heart. However, after-contractions were developed in 50 % of HRC-KO cardiomyocytes, compared to 11 % in WT mice under stress conditions of high-frequency stimulation (5 Hz) and isoproterenol application. A parallel examination of the electrical activity revealed significant increases in the occurrence of Ca(2+) spontaneous SR Ca(2+) release and delayed afterdepolarizations with ISO in HRC-KO, compared to WT cells. The frequency of Ca(2+) sparks was also significantly higher in HRC-KO cells with ISO, consistent with the elevated SR Ca(2+) load in the KO cells. Furthermore, HRC-KO cardiomyocytes showed significantly deteriorated cell contractility and Ca(2+)-cycling caused possibly by depressed SERCA2a expression after transverse-aortic constriction (TAC). Also HRC-null mice exhibited severe cardiac hypertrophy, fibrosis, pulmonary edema and decreased survival after TAC. Our results indicate that ablation of HRC is associated with poorly regulated SR Ca(2+)-cycling, and severe pathology under pressure-overload stress, suggesting an essential role of HRC in maintaining the integrity of cardiac function.


Subject(s)
Calcium Signaling , Calcium-Binding Proteins/deficiency , Cardiomegaly/metabolism , Hemodynamics , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Calcium-Binding Proteins/genetics , Cardiac Pacing, Artificial , Cardiomegaly/etiology , Cardiomegaly/genetics , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Disease Models, Animal , Fibrosis , Genotype , Isoproterenol , Kinetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , Myocytes, Cardiac/pathology , Phenotype , Pulmonary Edema/etiology , Pulmonary Edema/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Severity of Illness Index
16.
J Physiol ; 591(8): 2067-86, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23401616

ABSTRACT

Cardiac Na(+)-Ca(2+) exchange (NCX) activity is regulated by [Ca(2+)]i. The physiological role and dynamics of this process in intact cardiomyocytes are largely unknown. We examined NCX Ca(2+) activation in intact rabbit and mouse cardiomyocytes at 37°C. Sarcoplasmic reticulum (SR) function was blocked, and cells were bathed in 2 mm Ca(2+). We probed Ca(2+) activation without voltage clamp by applying Na(+)-free (0 Na(+)) solution for 5 s bouts, repeated each 10 s, which should evoke [Ca(2+)]i transients due to Ca(2+) influx via NCX. In rested rabbit myocytes, Ca(2+) influx was undetectable even after 0 Na(+) applications were repeated for 2-5 min or more, suggesting that NCX was inactive. After external electric field stimulation pulses were applied, to admit Ca(2+) via L-type Ca(2+) channels, 0 Na(+) bouts activated Ca(2+) influx efficaciously, indicating that NCX had become active. Calcium activation increased with more field pulses, reaching a maximum typically after 15-20 pulses (1 Hz). At rest, NCX deactivated with a time constant typically of 20-40 s. An increase in [Na(+)]i, either in rabbit cardiomyocytes as a result of inhibition of Na(+)-K(+) pumping, or in mouse cardiomyocytes where normal [Na(+)]i is higher vs. rabbit, sensitized NCX to self-activation by 0 Na(+) bouts. In experiments with the SR functional but initially empty, the activation time course was slowed. It is possible that the SR initially accumulated Ca(2+) that would otherwise cause activation. We modelled Ca(2+) activation as a fourth-order highly co-operative process ([Ca]i required for half-activation K0.5act = 375 nm), with dynamics severalfold slower than the cardiac cycle. We incorporated this NCX model into an established ventricular myocyte model, which allowed us to predict responses to twitch stimulation in physiological conditions with the SR intact. Model NCX fractional activation increased from 0.1 to 1.0 as the frequency was increased from 0.2 to 2 Hz. By adjusting Ca(2+) activation on a multibeat time scale, NCX might better maintain a stable long-term Ca(2+) balance while contributing to the ability of myocytes to produce Ca(2+) transients over a wide range of intensity.


Subject(s)
Calcium/physiology , Myocytes, Cardiac/physiology , Sodium-Calcium Exchanger/physiology , Animals , In Vitro Techniques , Mice , Models, Biological , Rabbits , Sarcoplasmic Reticulum/physiology , Sodium/physiology
17.
Circ Res ; 112(3): 424-31, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23243207

ABSTRACT

RATIONALE: Mitochondrial [Ca(2+)] ([Ca(2+)](mito)) regulates mitochondrial energy production, provides transient Ca(2+) buffering under stress, and can be involved in cell death. Mitochondria are near the sarcoplasmic reticulum (SR) in cardiac myocytes, and evidence for crosstalk exists. However, quantitative measurements of [Ca(2+)](mito) are limited, and spatial [Ca(2+)](mito) gradients have not been directly measured. OBJECTIVE: To directly measure local [Ca(2+)](mito) during normal SR Ca release in intact myocytes, and evaluate potential subsarcomeric spatial [Ca(2+)](mito) gradients. METHODS AND RESULTS: Using the mitochondrially targeted inverse pericam indicator Mitycam, calibrated in situ, we directly measured [Ca(2+)](mito) during SR Ca(2+) release in intact rabbit ventricular myocytes by confocal microscopy. During steady state pacing, Δ[Ca(2+)](mito) amplitude was 29±3 nmol/L, rising rapidly (similar to cytosolic free [Ca(2+)]) but declining much more slowly. Taking advantage of the structural periodicity of cardiac sarcomeres, we found that [Ca(2+)](mito) near SR Ca(2+) release sites (Z-line) versus mid-sarcomere (M-line) reached a high peak amplitude (37±4 versus 26±4 nmol/L, respectively P<0.05) which occurred earlier in time. This difference was attributed to ends of mitochondria being physically closer to SR Ca(2+) release sites, because the mitochondrial Ca(2+) uniporter was homogeneously distributed, and elevated [Ca(2+)] applied laterally did not produce longitudinal [Ca(2+)](mito) gradients. CONCLUSIONS: We developed methods to measure spatiotemporal [Ca(2+)](mito) gradients quantitatively during excitation-contraction coupling. The amplitude and kinetics of [Ca(2+)](mito) transients differ significantly from those in the cytosol and are respectively higher and faster near the Z-line versus M-line. This approach will help clarify SR-mitochondrial Ca(2+) signaling.


Subject(s)
Calcium Signaling , Calcium/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Biosensing Techniques/standards , Calibration , Cardiac Pacing, Artificial , Cells, Cultured , Cytosol/metabolism , Excitation Contraction Coupling , Fluorescent Dyes/metabolism , Kinetics , Microscopy, Confocal/standards , Microscopy, Fluorescence/standards , Myocardial Contraction , Rabbits , Transfection
18.
Biophys J ; 102(11): 2461-70, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22713561

ABSTRACT

Acute activation of calcium/calmodulin-dependent protein kinase (CaMKII) in permeabilized phospholamban knockout (PLN-KO) mouse myocytes phosphorylates ryanodine receptors (RyRs) and activates spontaneous local sarcoplasmic reticulum (SR) Ca release events (Ca sparks) even at constant SR Ca load. To assess how CaMKII regulates SR Ca release in intact myocytes (independent of SR Ca content changes or PLN effects), we compared Ca sparks in PLN-KO versus mice, which also have transgenic cardiac overexpression of CaMKIIδC in the PLN-KO background (KO/TG). Compared with PLN-KO mice, these KO/TG cardiomyocytes exhibited 1), increased twitch Ca transient and fractional release (both by ∼35%), but unaltered SR Ca load; 2), increased resting Ca spark frequency (300%) despite a lower diastolic [Ca]i, which also slowed twitch [Ca]i decline (suggesting CaMKII-dependent RyR Ca sensitization); 3), elevated Ca spark amplitude and rate of Ca release (which might indicate that more RyR channels participate in a single spark); 4), prolonged Ca spark rise time (which implies that CaMKII either delays RyR closure or prolongs the time when openings can occur); 5), more frequent repetitive sparks at single release sites. Analysis of repetitive sparks from individual Ca release sites indicates that CaMKII enhanced RyR Ca sensitivity, but did not change the time course of SR Ca refilling. These results demonstrate that there are dramatic CaMKII-mediated effects on RyR Ca release that occur via regulation of both RyR activation and termination processes.


Subject(s)
Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Myocytes, Cardiac/metabolism , Animals , Caffeine/pharmacology , Calcium Signaling/drug effects , Calcium-Binding Proteins/deficiency , Calcium-Binding Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Diastole/drug effects , Heart Ventricles/cytology , Mice , Mice, Knockout , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Peptides/pharmacology , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/metabolism
19.
J Physiol ; 590(18): 4465-81, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22586219

ABSTRACT

Sarcoplasmic reticulum (SR) Ca(2+) release mediates excitation­contraction coupling (ECC) in cardiac myocytes. It is triggered upon membrane depolarization by entry of Ca(2+) via L-type Ca(2+) channels (LTCCs), which undergo both voltage- and Ca(2+)-dependent inactivation (VDI and CDI, respectively). We developed improved models of L-type Ca(2+) current and SR Ca(2+) release within the framework of the Shannon-Bers rabbit ventricular action potential (AP) model. The formulation of SR Ca(2+) release was modified to reproduce high ECC gain at negative membrane voltages. An existing LTCC model was extended to reflect more faithfully contributions of CDI and VDI to total inactivation. Ba(2+) current inactivation included an ion-dependent component (albeit small compared with CDI), in addition to pure VDI. Under physiological conditions (during an AP) LTCC inactivates predominantly via CDI, which is controlled mostly by SR Ca(2+) release during the initial AP phase, but by Ca(2+) through LTCCs for the remaining part. Simulations of decreased CDI or K(+) channel block predicted the occurrence of early and delayed after depolarizations. Our model accurately describes ECC and allows dissection of the relative contributions of different Ca(2+) sources to total CDI, and the relative roles of CDI and VDI, during normal and abnormal repolarization.


Subject(s)
Action Potentials/physiology , Calcium Channels, L-Type/physiology , Calcium/physiology , Models, Cardiovascular , Animals , Kinetics , Myocytes, Cardiac/physiology , Rabbits , Reproducibility of Results , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum/physiology
20.
J Biol Chem ; 287(24): 19856-69, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-22514276

ABSTRACT

The cardiac Na(+) channel Na(V)1.5 current (I(Na)) is critical to cardiac excitability, and altered I(Na) gating has been implicated in genetic and acquired arrhythmias. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is up-regulated in heart failure and has been shown to cause I(Na) gating changes that mimic those induced by a point mutation in humans that is associated with combined long QT and Brugada syndromes. We sought to identify the site(s) on Na(V)1.5 that mediate(s) the CaMKII-induced alterations in I(Na) gating. We analyzed both CaMKII binding and CaMKII-dependent phosphorylation of the intracellularly accessible regions of Na(V)1.5 using a series of GST fusion constructs, immobilized peptide arrays, and soluble peptides. A stable interaction between δ(C)-CaMKII and the intracellular loop between domains 1 and 2 of Na(V)1.5 was observed. This region was also phosphorylated by δ(C)-CaMKII, specifically at the Ser-516 and Thr-594 sites. Wild-type (WT) and phosphomutant hNa(V)1.5 were co-expressed with GFP-δ(C)-CaMKII in HEK293 cells, and I(Na) was recorded. As observed in myocytes, CaMKII shifted WT I(Na) availability to a more negative membrane potential and enhanced accumulation of I(Na) into an intermediate inactivated state, but these effects were abolished by mutating either of these sites to non-phosphorylatable Ala residues. Mutation of these sites to phosphomimetic Glu residues negatively shifted I(Na) availability without the need for CaMKII. CaMKII-dependent phosphorylation of Na(V)1.5 at multiple sites (including Thr-594 and Ser-516) appears to be required to evoke loss-of-function changes in gating that could contribute to acquired Brugada syndrome-like effects in heart failure.


Subject(s)
Brugada Syndrome/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Heart Failure/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Sodium Channels/metabolism , Animals , Brugada Syndrome/genetics , Brugada Syndrome/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , HEK293 Cells , Heart Failure/genetics , Heart Failure/pathology , Humans , Ion Channel Gating/genetics , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Long QT Syndrome/pathology , Membrane Potentials/genetics , Mice , Muscle Proteins/genetics , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NAV1.5 Voltage-Gated Sodium Channel , Phosphorylation/genetics , Protein Structure, Tertiary , Sodium Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...