Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(D1): D942-D949, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36420896

ABSTRACT

GENCODE produces high quality gene and transcript annotation for the human and mouse genomes. All GENCODE annotation is supported by experimental data and serves as a reference for genome biology and clinical genomics. The GENCODE consortium generates targeted experimental data, develops bioinformatic tools and carries out analyses that, along with externally produced data and methods, support the identification and annotation of transcript structures and the determination of their function. Here, we present an update on the annotation of human and mouse genes, including developments in the tools, data, analyses and major collaborations which underpin this progress. For example, we report the creation of a set of non-canonical ORFs identified in GENCODE transcripts, the LRGASP collaboration to assess the use of long transcriptomic data to build transcript models, the progress in collaborations with RefSeq and UniProt to increase convergence in the annotation of human and mouse protein-coding genes, the propagation of GENCODE across the human pan-genome and the development of new tools to support annotation of regulatory features by GENCODE. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Subject(s)
Computational Biology , Genome, Human , Humans , Animals , Mice , Molecular Sequence Annotation , Computational Biology/methods , Genome, Human/genetics , Transcriptome/genetics , Gene Expression Profiling , Databases, Genetic
2.
PLoS One ; 9(1): e84912, 2014.
Article in English | MEDLINE | ID: mdl-24416311

ABSTRACT

We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.


Subject(s)
Computational Biology/methods , Computer Graphics , Drug Repositioning/methods , Models, Theoretical , Benzamides/therapeutic use , Creutzfeldt-Jakob Syndrome/drug therapy , Humans , Imatinib Mesylate , Piperazines/therapeutic use , Pyrimidines/therapeutic use , Sarcoidosis/drug therapy , Vasoactive Intestinal Peptide/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...