Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 3(11): 3045-3054, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38034957

ABSTRACT

The rise of interest in using polycyclic aromatic hydrocarbons (PAHs) and molecular graphenoids in optoelectronics has recently stimulated the growth of modern synthetic methodologies giving access to intramolecular aryl-aryl couplings. Here, we show that a radical-based annulation protocol allows expansion of the planarization approaches to prepare functionalized molecular graphenoids. The enabler of this reaction is peri-xanthenoxanthene, the photocatalyst which undergoes photoinduced single electron transfer with an ortho-oligoarylenyl precursor bearing electron-withdrawing and nucleofuge groups. Dissociative electron transfer enables the formation of persistent aryl radical intermediates, the latter undergoing intramolecular C-C bond formation, allowing the planarization reaction to occur. The reaction conditions are mild and compatible with various electron-withdrawing and -donating substituents on the aryl rings as well as heterocycles and PAHs. The method could be applied to induce double annulation reactions, allowing the synthesis of π-extended scaffolds with different edge peripheries.

2.
Beilstein J Org Chem ; 19: 1243-1250, 2023.
Article in English | MEDLINE | ID: mdl-37674523

ABSTRACT

Asymmetric organocatalyzed multicomponent reactions represent an important toolbox in the field of organic synthesis to build complex scaffolds starting from simple starting materials. The Enders three-component cascade reaction was a cornerstone in the field and a plethora of organocatalyzed cascade reactions followed. However, acetaldehyde was not shown as a successful reaction partner, probably because of its high reactivity. Herein, we report the Enders-type cascade reaction using acetaldehyde dimethyl acetal, as a masked form of acetaldehyde. This strategy directly converts acetaldehyde, nitroalkenes and enals into stereochemically dense cyclohexenals in good yield and excellent enantioselectivity.

3.
Chemistry ; 28(49): e202200818, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35666172

ABSTRACT

Synergistic catalysis offers the unique possibility of simultaneous activation of both the nucleophile and the electrophile in a reaction. A requirement for this strategy is the stability of the active species towards the reaction conditions and the two concerted catalytic cycles. Since the beginning of the century, aminocatalysis has been established as a platform for the stereoselective activation of carbonyl compounds through HOMO-raising or LUMO-lowering. The burgeoning era of aminocatalysis has been driven by a deep understanding of these activation and stereoinduction modes, thanks to the introduction of versatile and privileged chiral amines. The aim of this review is to cover recent developments in synergistic strategies involving aminocatalysis in combination with organo-, metal-, photo-, and electro-catalysis, focusing on the evolution of privileged aminocatalysts architectures.


Subject(s)
Amines , Catalysis
4.
Chemistry ; 28(24): e202104524, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35230722

ABSTRACT

The development of an enantioselective enamine-catalysed addition of masked acetaldehyde to nitroalkenes via a rational approach helped to move away from the use of chloroform. The presented research allows the use of water as a reaction medium, therefore improving the industrial relevance of a protocol to access very important pharmaceutical intermediates. Critical to the success is the use of chemometrics-assisted 'Design of Experiments' (DoE) optimisation during the development of the presented new synthetic approach, which allows to investigate the chemical space in a rational way.


Subject(s)
Acetaldehyde , Water , Catalysis , Nitro Compounds , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...